Skip to main content

Abstract

Positron emission tomography (PET) is a sensitive and specific noninvasive imaging technology used to measure the 3-dimensional distribution of molecules and their functional outcome over time. This is achieved by detecting the annihilation photons resulting from the decay of radioisotopes (i.e., oxygen-15, nitrogen-13, carbon-11, fluorine-18) chemically labeled to biologically active molecules. The functional fate of these radiolabeled molecules may be determined by examining the images formed from the 3-dimensional reconstruction of the decay events. The approximate sensitivity of PET is picomolar, which permits the injection of molecular masses far below that known to disturb most physiological processes. This methodology is known as the “tracer technique” and is the basic analysis principle used to extract quantitative information from PET images. PET has the ability to provide valuable information related to functional processes of the body including blood flow, transport rates, receptor density, and drug occupancy. This chapter focuses on the physics of PET and its use in answering questions related to pharmacology. The basic principles of PET imaging will be reviewed followed by methods to derive quantitative information related to physiology from the image data. The application of compartmental modeling will be discussed in detail as will potential pitfalls that can occur during data collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reivich M, Kuhl D, Wolf A et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–137

    Article  CAS  PubMed  Google Scholar 

  2. Mintun MA, Raichle ME, Kilbourn MR et al (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227

    Article  CAS  PubMed  Google Scholar 

  3. Raylman RR, Caraher JM, Hutchins GD (1993) Sampling requirements for dynamic cardiac PET studies using image-derived input functions. J Nucl Med 34:440–447

    CAS  PubMed  Google Scholar 

  4. Hoekstra CJ, Hoekstra OS, Lammertsma AA (1999) On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 26:1489–1492

    Article  CAS  PubMed  Google Scholar 

  5. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  CAS  PubMed  Google Scholar 

  6. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  CAS  PubMed  Google Scholar 

  7. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    Article  CAS  PubMed  Google Scholar 

  8. Logan J, Fowler JS, Volkow ND et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Article  CAS  PubMed  Google Scholar 

  9. Logan J, Fowler JS, Volkow ND et al (1990) Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 10:740–747

    Article  CAS  PubMed  Google Scholar 

  10. Volkow ND, Wang GJ, Fischman MW et al (1997) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386:827–830

    Article  CAS  PubMed  Google Scholar 

  11. Volkow ND, Wang GJ, Fowler JS et al (1996) Relationship between psychostimulant-induced “high” and dopamine transporter occupancy. Proc Natl Acad Sci U S A 93:10388–10392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kimmel HL, Negus SS, Wilcox KM et al (2008) Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys. Pharmacol Biochem Behav 90:453–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Volkow ND, Ding YS, Fowler JS et al (1996) Cocaine addiction: hypothesis derived from imaging studies with PET. J Addict Dis 15:55–71

    Article  CAS  PubMed  Google Scholar 

  14. Laruelle M, Slifstein M, Huang Y (2002) Positron emission tomography: imaging and quantification of neurotransporter availability. Methods 27:287–299

    Article  CAS  PubMed  Google Scholar 

  15. Howell LL, Murnane KS (2008) Nonhuman primate neuroimaging and the neurobiology of psychostimulant addiction. Ann N Y Acad Sci 1141:176–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Howell LL, Murnane KS (2011) Nonhuman primate positron emission tomography neuroimaging in drug abuse research. J Pharmacol Exp Ther 337:324–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Votaw JR, Howell LL, Martarello L et al (2002) Measurement of dopamine transporter occupancy for multiple injections of cocaine using a single injection of [F-18]FECNT. Synapse 44:203–210

    Article  CAS  PubMed  Google Scholar 

  18. Endres CJ, Kolachana BS, Saunders RC et al (1997) Kinetic Modeling of [11C]Raclopride: combined PET-Microdialysis studies. J Cereb Blood Flow Metab 17:932–942

    Article  CAS  PubMed  Google Scholar 

  19. Friston KJ, Frith CD, Liddle PF et al (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–699

    Article  CAS  PubMed  Google Scholar 

  20. Henry PK, Murnane KS, Votaw JR et al (2010) Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging Behav 4:212–219

    Article  PubMed  PubMed Central  Google Scholar 

  21. Volkow ND, Fowler JS, Wang GJ et al (2004) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9:557–569

    Article  CAS  PubMed  Google Scholar 

  22. Volkow ND, Fowler JS, Wolf AP et al (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 148:621–626

    Article  CAS  PubMed  Google Scholar 

  23. Volkow ND, Wang GJ, Ma Y et al (2005) Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 25:3932–3939

    Article  CAS  PubMed  Google Scholar 

  24. Kaisti KK, Metsähonkala L, Teräs M et al (2002) Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96:1358–1370

    Article  CAS  PubMed  Google Scholar 

  25. Matsumura A, Mizokawa S, Tanaka M et al (2003) Assessment of microPET performance in analyzing the rat brain under different types of anesthesia: comparison between quantitative data obtained with microPET and ex vivo autoradiography. Neuroimage 20:2040–2050

    Article  PubMed  Google Scholar 

  26. Alstrup AK, Smith DF (2013) Anaesthesia for positron emission tomography scanning of animal brains. Lab Anim 47:12–18

    Article  CAS  PubMed  Google Scholar 

  27. Stabin MG (1996) MIRDOSE: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37:538–546

    CAS  PubMed  Google Scholar 

  28. ICRP (1988) Radiation dose to patients from radiopharmaceuticals. Publication 53. 18/1–4

    Google Scholar 

  29. Cloutier RJ, Watson EE, Rohrer RH et al (1973) Calculating the radiation dose to an organ. J Nucl Med 14:53–55

    CAS  PubMed  Google Scholar 

  30. Loevinger R, Berman M (1968) A formalism for calculation of absorbed dose from radionuclides. Phys Med Biol 13:205–217

    Article  CAS  PubMed  Google Scholar 

  31. Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  32. Harrison JD, Streffer C (2007) The ICRP protection quantities, equivalent and effective dose: their basis and application. Radiat Prot Dosimetry 127:12–18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathon A. Nye PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nye, J.A., Howell, L. (2016). Positron Emission Tomography (PET) Use in Pharmacology. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_3

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics