Skip to main content

Clinically Significant Interactions with Anesthetic Agents

  • Chapter
  • First Online:

Abstract

Induction and maintenance of anesthesia require multiple medications where drug-drug interactions form the basis of clinical practice. Drug-drug interactions with anesthetic agents can take place by pharmacokinetic mechanisms leading to enhanced or reduced pharmacodynamic effects or by only pharmacodynamic mechanism that promotes anesthetic outcomes such as pain and sedative actions. Ketamine, midazolam, and alfentanil are metabolized by the CYP3A4 enzyme system and various drug-drug interactions with agents that are well-known CYP3A4 inhibitors have been reported to alter their pharmacokinetic disposition. Antibiotics erythromycin and clarithromycin were found to significantly reduce ketamine and midazolam disposition. Grapefruit juice was reported to significantly increase ketamine and midazolam bioavailability. Antifungal drugs such as ketoconazole and fluconazole were shown to significantly reduce alfentanil clearance and prolong its pharmacodynamic actions. Drug interactions with opioid anesthetics fentanyl and sufentanil may be less prone to due to their high extraction ratio. The opioid-propofol interactions have been described in various articles. Propofol interactions were also presented with midazolam and interestingly counteracted the effects of droperidol-induced prolonged QTc effects. Thiopental protein-binding displacement was shown to occur with a variety of agents, thereby increasing free drug concentrations. An enhanced pharmacodynamic effect with thiopental was found when combined with midazolam and other central nervous system depressants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stanski DR, Shafer SL (1995) Quantifying anesthetic drug interaction. Anesthesiology 83:1–5

    Article  CAS  PubMed  Google Scholar 

  2. Eilers H, Niemann CU (2003) Clinically important drug interactions with intravenous anesthetics in older patients. Drugs Aging 20:969–980

    Article  CAS  PubMed  Google Scholar 

  3. Barbanoj MJ, Antonijoan RM, Riba J, Valle M, Romero S, Jane F (2006) Quantifying drug-drug interactions in pharmaco-EEG. Clin EEG Neurosci 37:108–120

    Article  CAS  PubMed  Google Scholar 

  4. Minto CF, Schnider TW, Short TG et al (2000) Response surface model for anesthetic drug interactions. Anesthesiology 92:1603–1616

    Article  CAS  PubMed  Google Scholar 

  5. Valle M, Barbanoj MJ, Jane F (2002) Pharmaco-EEG and pharmacokinetic/pharmacodynamics modeling in basic research: focus on human pharmacology. Methods Find Exp Clin Pharmacol 24(Suppl D):129–137

    CAS  PubMed  Google Scholar 

  6. Giese JL, Stanley TH (1983) Etomidate: a new intravenous anesthetic induction agent. Pharmacotherapy 3:251–258

    Article  CAS  PubMed  Google Scholar 

  7. Sear JW, Walters FJ, Wilkins DG, Willatss SM (1984) Etomidate by infusion for neuroanesthesia kinetic and dynamic interactions with nitrous oxide. Anaesthesia 39:12–18

    Article  CAS  PubMed  Google Scholar 

  8. Richter O, Klatte A, Abel J et al (1985) Pharmacokinetic data analysis of Alfentanil after multiple injections and Etomidate-infusion in patients undergoing orthopedic surgery. Int J Clin Pharmacol Ther Toxic 23:11–15

    CAS  Google Scholar 

  9. Tawfic QA (2013) A review of the use of ketamine in pain management. J Opioid Manag 9:379–388

    Article  PubMed  Google Scholar 

  10. Johnston RR, Miller RD, Way WL (1974) The interaction of ketamine with d-tubocurarine, pancuronium, and succinylcholine in man. Anesth Analg 53:496–501

    CAS  PubMed  Google Scholar 

  11. Wathen JE, Roback MG, Mackenzie T, Bothner JP (2000) Does midazolam alter the clinical effects of intravenous ketamine sedation in children? A double-blind, randomized, controlled, emergency department trial. Ann Emerg Med 36:579–588

    Article  CAS  PubMed  Google Scholar 

  12. Pechter EA (2005) Safety of ketamine and diazepam in anesthesia. Plast Reconstr Surg 115:1781–1782

    Article  CAS  PubMed  Google Scholar 

  13. Bossard AE, Guirmand F, Fletcher D et al (2002) Interaction of a combination of morphine and ketamine on the nociceptive flexion reflex in human volunteers. Pain 98:47–57

    Article  CAS  PubMed  Google Scholar 

  14. Lawrence D, Livingston A (1979) The effect of physostigmine and neostigmine on ketamine anesthesia and analgesia. Br J Pharmacol 67:426P

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Mimura M, Namiki A, Kishi R, Ikeda T, Miyake H (1990) Antagonistic effect of physostigmine on ketamine-induced anesthesia. Psychopharmacology 102:399–403

    Article  CAS  PubMed  Google Scholar 

  16. Santamaria R, Pailleux F, Beaudry F (2013) In vitro ketamine CYP3A4 mediated metabolism study using mammalian liver S9 fractions, cDNA expressed enzymes and liquid chromatography tandem mass spectrometry. Biomed Chromatogr, 1002/bmc3199

    Google Scholar 

  17. Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, CYP2C19 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858

    Article  CAS  PubMed  Google Scholar 

  18. Desta Z, Moaddel R, Ogburn ET et al (2012) Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica 42:1076–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peltoniemi Saari TI, Hagelberg NM et al (2012) Rifampicin has a profound effect on the pharmacokinetics of oral S-ketamine and less on intravenous S-ketamine. Basic Clin Pharmacol Toxic 111:325–332

    Article  CAS  Google Scholar 

  20. Peltoniemi MA, Saari TI, Hagelberg NM et al (2012) St. John’s Wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam Clin Pharmacol 26:743–750

    Article  CAS  PubMed  Google Scholar 

  21. Peltoniemi MA, Saari TI, Hagelberg NM et al (2012) S-ketamine concentrations are greatly increased by grapefruit juice. Eur J Clin Pharmacol 68:979–986

    Article  CAS  PubMed  Google Scholar 

  22. Hagelberg NM, Peltoniemi MA, Saari TI et al (2010) Clarithromycin, a potent inhibitor of CYP3A, greatly increases exposure to oral S-ketamine. Eur J Pain 14:625–629

    Article  CAS  PubMed  Google Scholar 

  23. Peltoniemi MA, Saari TI, Hagelberg NM et al (2011) Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther 90:296–302

    Article  CAS  PubMed  Google Scholar 

  24. Qi X, Evans AM, Miners JO, Upton RN, Miline RW (2010) Inhibition of morphine metabolism by ketamine. Drug Metab Dispos 38:728–731

    Article  CAS  PubMed  Google Scholar 

  25. Uchaipichat V, Raungrut P, Chau N et al (2011) Effects of ketamine on human UDP-glucuronosyltransferases in vitro predict potential drug-drug interactions arising from ketamine inhibition of codeine and morphine glucuronidation. Drug Metab Dispos 39:1324–1328

    Article  CAS  PubMed  Google Scholar 

  26. Broderick D, Clarke M, Stassen L (2014) Midazolam and drug-drug interactions in dental conscious sedation. J Ir Dent Assoc 60:38–43

    PubMed  Google Scholar 

  27. Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA (1989) Oxidation of midazolam and triazolam by human liver microsomes cytochrome IIIA4. Mol Pharmacol 36:89–96

    CAS  PubMed  Google Scholar 

  28. Merry AF, Clapham GJ, Walker JS (1988) The reversal of midazolam sedation with the benzodiazepine antagonist flumazenil. NZ Med J 101:571–572

    CAS  Google Scholar 

  29. Ibrahim AE, Feldman J, Karim A, Kharasch ED (2003) Simultaneous assessment of drug interactions with low – high extraction opioids. Anesthesiology 98:853–861

    Article  CAS  PubMed  Google Scholar 

  30. Takano M, Hasegawa R, Fukuda T et al (1998) Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol 358:289–294

    Article  CAS  PubMed  Google Scholar 

  31. Kupferschmidt HH, Ha HR, Ziegler WH, Meier PJ, Krahenbuhl S (1995) Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 58:20–28

    Article  CAS  PubMed  Google Scholar 

  32. Vanakoski J, Mattila MJ, Seppala T (1996) Grapefruit juice does not enhance the effects of midazolam and triazolam in man. Eur J Clin Pharmacol 50:501–508

    Article  CAS  PubMed  Google Scholar 

  33. Goho C (2001) Oral midazolam-grapefruit juice drug interaction. Pediatr Dent 23:365–366

    CAS  PubMed  Google Scholar 

  34. Ito K, Ogihara K, Kanamitsu S, Itoh T (2003) Prediction of in vivo interaction between midazolam and macrolides based upon in vitro studies using human liver microsomes. Drug Metab Dispos 31:945–954

    Article  CAS  PubMed  Google Scholar 

  35. Narchi P, Benhamou D, Elhaddoury M, Locatelli C, Fernandez H (1993) Interactions of pre-operative erythromycin administration with general anesthesia. Can J Anesth 40:444–447

    Article  CAS  PubMed  Google Scholar 

  36. Hiller A, Olkkola KT, Isohanni L, Saarnivaara A (1990) Unconsciousness associated with midazolam and erythromycin. Br J Anesth 65:826–828

    Article  CAS  Google Scholar 

  37. Olkkola KT, Aranko K, Luurila H et al (1993) A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 53:298–305

    Article  CAS  PubMed  Google Scholar 

  38. Quinney SK, Haehner BD, Rhoades M et al (2007) Interaction between midazolam and clarithromycin in the elderly. Br J Clin Pharmacol 65:98–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mattila MJ, Vanakoski J, Idanpaan-Heikkila JJ (1994) Azithromycin does not alter the effects of oral midazolam on human performance. Eur J Clin Pharmacol 47:49–52

    Article  CAS  PubMed  Google Scholar 

  40. Ahonen J, Olkkola KT, Neuvonen PJ (1995) Effect of itraconazole and terfinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 40:270–272

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Backman JT, Kivisto KT, Olkkola KT, Neuvonen PJ (1998) The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 54:53–58

    Article  CAS  PubMed  Google Scholar 

  42. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effect of the systemic antimycotics, itraconazole, and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82:511–516

    CAS  PubMed  Google Scholar 

  43. Vanakoski J, Mattila MJ, Vanio P, Idaanpaan-Heikkila JJ, Tornwall M (1995) 150 mg fluconazole does not substantially increase the effects of 10 mg midazolam or plasma midazolam concentrations in healthy subjects. Int J Clin Phrmacol Ther 33:518–523

    CAS  Google Scholar 

  44. Reinhart DJ, Grum DR, Berry J et al (1997) Outpatient general anesthesia: a comparison of a combination of midazolam plus propofol and propofol alone. J Clin Anesth 9:130–137

    Article  CAS  PubMed  Google Scholar 

  45. Paspatis GA, Charoniti I, Manolaraki M et al (2006) Synergistic sedation with oral midazolam as a premedication and intravenous propofol versus intravenous propofol alone in upper gastrointestinal endoscopies in children: a prospective randomized study. J Pediatr Gastroenterol Nutr 43:195–199

    Article  CAS  PubMed  Google Scholar 

  46. Vinil HR, Bradley EL, Kissin I (1989) Midazolam-alfentanil synergism for anesthetic induction in patients. Anesth Analg 69:213–217

    Google Scholar 

  47. Kissin I, Lee SS, Arthur GR et al (1997) Effect of midazolam on development of acute tolerance to alfentanil: the role of pharmacokinetic interactions. Anesth Analg 85:182–187

    CAS  PubMed  Google Scholar 

  48. Kissin I, Vinik HR, Bradley EL (1991) Midazolam potentiates thiopental sodium anesthetic induction in patients. J Clin Anesth 3:367–370

    Article  CAS  PubMed  Google Scholar 

  49. Tverskoy M, Fleyshman G, Bradley EL, Kissin I (1988) Midazolam-thiopental anesthetic induction in patients. Anesth Analg 67:342–345

    CAS  PubMed  Google Scholar 

  50. Vinik HR, Bradley EL, Kissin I (1994) Triple anesthetic combination: propofol-midazolam-alfentanil. Anesth Analg 78:354–358

    Article  CAS  PubMed  Google Scholar 

  51. Li F, Lu J, Ma X (2014) CYP3A4 mediated α-hydroxyaldehyde formation in saquinavir metabolism. Drug Metab Dispos 42:213–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Palkama VJ, Ahonen J, Neuvonen PJ, Olkkola KT (1999) Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 66:33–39

    Article  CAS  PubMed  Google Scholar 

  53. Ibrahim A, Karim A, Feldman J, Kharasch E (2002) The influence of parecoxib, a parenteral cyclooxygenase-2 specific inhibitor on the pharmacokinetics and clinical effects of midazolam. Anesth Analg 95:667–673

    CAS  PubMed  Google Scholar 

  54. Drague A, Varin F, Plaud B, Donati F (2002) Rocuronium pharmacokinetic and pharmacodynamics relationship under stable propofol or isoflurane anesthesia. Can J Anesth 49:353–360

    Article  Google Scholar 

  55. Miller RD, Way WL, Dolan WM et al (1971) Comparative neuromuscular effects of pancuronium, gallamine, and succinylcholine during Forane and halothane anesthesia in man. Anesthesiology 35:509–514

    Article  CAS  PubMed  Google Scholar 

  56. McCarthy GJ, Mirakhur RK, Pandit SK (1992) Lack of interaction between propofol and vecuronium. Anesth Analg 75:536–538

    Article  CAS  PubMed  Google Scholar 

  57. Latorre F, de Almeida MC, Stanek A, Kleemann PP (1997) The interaction between rocuronium and smoking. The effect of smoking on neuromuscular transmission after rocuronium. Anaesthesist 46:493–495

    Article  CAS  PubMed  Google Scholar 

  58. Fuchs-Buder T, Sparr HJ, Ziegenfub T (1998) Thiopental or etomidate for rapid sequence induction with rocuronium. Br J Anesth 80(4):504–506

    Article  CAS  Google Scholar 

  59. Scholz J, Steinfath M, Schulz M (1996) Clinical pharmacokinetics of alfentanil, fentanyl, and sufentanil. An update. Clin Pharmacokinet 31:275–292

    Article  CAS  PubMed  Google Scholar 

  60. Overholsen BR, Foster DR (2011) Opioid pharmacokinetic drug-drug interactions. Am J Manag Care 17(Suppl 11):S276–S287

    Google Scholar 

  61. Labroo RB, Paine MF, Thummel KE, Kharasch ED (1997) Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 25:1072–1080

    CAS  PubMed  Google Scholar 

  62. Kharasch ED, Francis A, London A et al (2011) Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimal and noninvasive probes for hepatic and first-pass CYP3A induction. Clin Pharmacol Ther 90:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bartkowski RR, Goldberg ME, Huffnagle S, Epstein RH (1993) Sufentanil disposition. Is it affected by erythromycin administration? Anesthesiology 78:260–265

    Article  CAS  PubMed  Google Scholar 

  64. Palkama VJ, Neuvonen PJ, Olkkola KT (1998) The CYP3A4 inhibitor itraconazole has no effect on the pharmacokinetics of iv fentanyl. Br J Anaesth 81:598–600

    Article  CAS  PubMed  Google Scholar 

  65. Wandel C, Kim R, Wood M, Wood A (2002) Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 96:913–920

    Article  CAS  PubMed  Google Scholar 

  66. Bartkowski RR, Goldberg ME, Larijani GE, Boerner T (1989) Inhibition of alfentanil metabolism by erythromycin. Clin Pharmacol Ther 46:99–102

    Article  CAS  PubMed  Google Scholar 

  67. Kharasch ED, Russell M, Mautz D et al (1997) The role of cytochrome P450 3A4 in alfentanil clearance. Implications for interindividual variability in disposition and perioperative drug interactions. Anesthesiology 87:36–50

    Article  CAS  PubMed  Google Scholar 

  68. Clotz MA, Nahata MC (1991) Clinical uses of fentanyl, sufentanil, and alfentanil. Clin Pharm 10:581–593

    CAS  PubMed  Google Scholar 

  69. Bruggemann RJ, Alffenaar JW, Blijilevens NM et al (2009) Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 48:1441–1458

    Article  PubMed  CAS  Google Scholar 

  70. Palkama VJ, Isohanni MH, Neuvonen PJ, Olkkola KT (1998) The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 87:190–194

    CAS  PubMed  Google Scholar 

  71. Geist MJ, Eqerer G, Burhenne J et al (2013) Steady-state pharmacokinetics and metabolism of voriconazole in patients. J Antimicrob Chemother 68:2592–2599

    Article  CAS  PubMed  Google Scholar 

  72. Saari TI, Laine K, Leino K et al (2006) Voriconazole, but not terbinafine, markedly reduces alfentanil clearance and prolongs its half-life. Clin Pharmacol Ther 80:502–508

    Article  CAS  PubMed  Google Scholar 

  73. Ahonen J, Olkkola KT, Salmenpera M, Hynyen M, Neuvonen PJ (1996) Effect of diltiazem on midazolam and alfentanil disposition in patients undergoing coronary artery bypass grafting. Anesthesiology 85:1246–1252

    Article  CAS  PubMed  Google Scholar 

  74. McDonnell CG, Malan D, Van Pelt FD, Shorten GD (2003) Elimination of alfentanil delivered by infusion is not altered by the chronic administration of atorvastatin. Eur J Anaesthesiol 20:662–667

    Article  CAS  PubMed  Google Scholar 

  75. Westmoreland CL, Sbel PS, Gropper A (1994) Fentanyl or alfentanil decreases the minimum alveolar anesthetic concentration of isoflurane in surgical patients. Anesth Analg 78:23–28

    Article  CAS  PubMed  Google Scholar 

  76. Olkkola KT, Palkama VJ, Neuvonen PJ (1999) Ritonavir’s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology 91:681–685

    Article  CAS  PubMed  Google Scholar 

  77. Turpeinen M, Zanger M (2012) Cytochrome P4502B6: function, genetics, and clinical relevance. Drug Metabol Drug Interact 27:185–197

    Article  CAS  PubMed  Google Scholar 

  78. Vanlersberghne C, Camu F (2008) Prpofol. Handb Exp Pharmacol 182:227–252

    Article  Google Scholar 

  79. Khokhar JY, Tyndale RF (2011) Drug metabolism within the bran changes drug response: selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology 36:692–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vuyk J (1998) TCI: supplementation and drug interactions. Anesthesia 53(Suppl 1):35–41

    Article  CAS  Google Scholar 

  81. Vuyk J (2001) Clinical interpretation of pharmacokinetic and pharmacodynamics propofol-opioid interactions. Acta Anaesthesiol Belg 52:445–451

    CAS  PubMed  Google Scholar 

  82. LaPierre CD, Johnson KB, Randall BR, Egan TD (2012) A simulation study of common propofol and propofol-opioid dosing regimens for upper endoscopy. Anesthesiology 117:252–262

    Article  CAS  PubMed  Google Scholar 

  83. Vuyk J, Engbers FH, Burn AG et al (1996) Pharmacodynamic interaction between propofol and alfentanil when given for induction of anesthesia. Anesthesiology 81:288–299

    Article  Google Scholar 

  84. Schutter J, Ihmsen H (2000) Population pharmacokinetics of propofol: a multicenter study. Anesthesiology 92:727–738

    Article  Google Scholar 

  85. Fenkel C, Schutter J, Ihmsen H, Heye H, Rommelsheim K (1995) Pharmacokinetics and pharmacodynamics of propofol/alfentanil infusions for sedation in ICU patients. Intensive Care Med 21:981–988

    Article  Google Scholar 

  86. Mertens MJ, Olofsen E, Burn AG, Bovill JG, Vuyk J (2004) Mixed-effects modeling of the influence of alfentanil on propofol pharmacokinetics. Anesthesiology 100:795–805

    Article  CAS  PubMed  Google Scholar 

  87. Pavlin DJ, Coda B, Shen DD et al (1996) Effects of combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis in human volunteers. Anesthesiology 84:23–37

    Article  CAS  PubMed  Google Scholar 

  88. Kern SE, Xie G, Whiye D, Egan TD (2004) A response surface analysis of propofol-alfentanil pharmacodynamics interaction. Anesthesiology 100:1377–1381

    Article  Google Scholar 

  89. Yufune S, Takamatsu I, Masui K, Kazama T (2011) Effect of remifentanil on plasma propofol concentration and bispectral during propofol anesthesia. Br J Anesth 106:208–214

    Article  CAS  Google Scholar 

  90. McClune S, McKay AC, Wright PM et al (1992) Synergistic interaction between midazolam and propofol. Br J Aneasth 69:240–245

    Article  CAS  Google Scholar 

  91. Ohmori J, Maeda S, Higuchi H et al (2011) Propofol increases the rate of albumin-unbound free midazolam in serum albumin solution. J Anesth 25:618–620

    Article  PubMed  Google Scholar 

  92. Hiraoka H, Yamamoto K, Okano N et al (2004) Changes in drug plasma concentrations of an extensively bound and highly extracted drug, propofol, in response to altered plasma binding. Clin Pharmacol Ther 75:324–330

    Article  CAS  PubMed  Google Scholar 

  93. Vuyk J, Lichtenbelt BJ, Olofsen E, van Kleef JW, Dahan A (2009) Mixed-effects modeling of the influence of midazolam on propofol pharmacokinetics. Anesth Analg 108:1522–1530

    Article  CAS  PubMed  Google Scholar 

  94. Lichtenbelt BJ, Olofsen E, Dahan A et al (2010) Propofol reduces the distribution and clearance of midazolam. Anesth Analg 110:1597–1606

    Article  CAS  PubMed  Google Scholar 

  95. Johnson JW, Flaishon R, Sebel PS (1997) Esmolol reduces anesthetic requirement for skin incision during propofol/nitrous oxide/morphine anesthesia. Anesthesiology 86:364–371

    Article  Google Scholar 

  96. Davison JA, MacLeod AD, Howie JC, White M, Kenny GN (1993) Effective concentration 50 for propofol with and without 67% nitrous oxide. Acta Anesthesiol Scand 37:458–464

    Article  Google Scholar 

  97. Mirzakhani H, Nozari A, Ehremfeld JM et al (2013) Profound hypotension after anesthetic induction with propofol in patients treated with rifampin. Anesth Analg 117:61–64

    Article  CAS  PubMed  Google Scholar 

  98. Toyoda T, Terao Y, Oji M et al (2013) The interaction of antiemetic dose of droperidol with propofol on QT interval during anesthetic induction. J Anesth 27:885–889

    Article  PubMed  Google Scholar 

  99. Ibrahim A, Park S, Feldman J, Karin A, Kharasch ED (2002) Effects of parecoxib, a parenteral COX-2 specific inhibitor, on the pharmacokinetics and pharmacodynamics of propofol. Anesthesiology 96:88–95

    Article  CAS  PubMed  Google Scholar 

  100. Skolnick P, Moncada V, Barker JL, Paul SM (1981) Pentobarbital: dual actions in increase benzodiazepine receptor affinity. Science 211:1448–1450

    Article  CAS  PubMed  Google Scholar 

  101. Russo H, Audran M, Bressolle F, Bres J, Mailols H (1993) Displacement of thiopental from human serum albumin by associated drugs. J Pharm Sci 82:493–497

    Article  CAS  PubMed  Google Scholar 

  102. Naguib M, Sari-Kouzel AS (1991) Thiopental-propofol hypnotic synergism in patients. Br J Anesth 67:4–6

    Article  CAS  Google Scholar 

  103. Wilder-Smith OH, Rvussin PA, Decosterd LA et al (1999) Midazolam premedication and thiopental induction of anesthesia: interactions at multiple end-points. Br J Anesth 83:590–595

    Article  CAS  Google Scholar 

  104. Telford R, Glass PSA, Goodman D, Jacobs JR (1992) Fentanyl does not alter the “sleep” plasma concentration of thiopental. Anesth Analg 75:523–529

    Article  CAS  PubMed  Google Scholar 

  105. Naguib M, Samarkandi AH, Moniem MA et al (2006) The effects of melatonin premedication on propofol and thiopental induction dose-response curves: a prospective, randomized, double-blind study. Anesth Analg 103:1448–1452

    Article  CAS  PubMed  Google Scholar 

  106. Lichtor JL, Zacny JP, Coalson DW et al (1993) The interaction between alcohol and the residual effects of thiopental anesthesia. Anesthesiology 79:28–35

    Article  CAS  PubMed  Google Scholar 

  107. Ghigone M, Quintin L, Duke PC et al (1986) Effects of clonidine on narcotic requirements and hemodynamic response during induction of fentanyl anesthesia and endotracheal intubation. Anesthesiology 64:36–42

    Article  Google Scholar 

  108. Leslie K, Mooney PH, Silbert BS (1992) Effect of intravenous clonidine on the dose of thiopental required to induce anesthesia. Anesth Analg 75:530–535

    Article  CAS  PubMed  Google Scholar 

  109. Schein H, Karhuvaara S, Olkkola KT et al (1992) Pharmacodynamics and pharmacokinetics of intramuscular dexmedetomidine. Clin Pharmacol Ther 52:537–546

    Article  Google Scholar 

  110. Buhrer M, Mappes A, Lauber R, Stanski DR, Mailtre PO (1994) Dexmedetomidine decreases thiopental dose requirements and alter distribution pharmacokinetics. Anesthesiology 80:1216–1227

    Article  CAS  PubMed  Google Scholar 

  111. Roytbalt L, Katz J, Rozentsveig V (1992) Anesthetic interaction between thiopentone and ketamine. Eur J Anesth 9:307–312

    Google Scholar 

  112. Manani G, Valenti S, Vincenti E et al (1992) Interaction between thiopentone and subhypnotic doses of ketamine. Eur J Anesth 9:43–47

    CAS  Google Scholar 

  113. Stibolt O, Wachowiak-Andersen G (2002) Altered response to intravenous thiopental and succinylcholine in acute amphetamine abuse. Acta Anesthesiol Scand 46:609–610

    Article  CAS  Google Scholar 

  114. Christofaki M, Papaionnou A (2014) Ondansetron: a review of pharmacokinetic and clinical experience in postoperative nausea and vomiting. Exp Opin Drug Metab Toxic 10:437–444

    Article  CAS  Google Scholar 

  115. Kostopanagiotou G, Pouriezis T, Theodoraki K et al (1998) Influence of ondansetron on thiopental hypnotic requirements. J Clin Pharmacol 38:825–829

    CAS  PubMed  Google Scholar 

  116. Marsot A, Goirand F, Milesi N et al (2013) Interaction of thiopental with esomeprazole in critically ill patients. Eur J Clin Pharmacol 69:1667–1672

    Article  CAS  PubMed  Google Scholar 

  117. Mehta D, Bradley EL, Kissin I (1993) Metoclopramide decreases thiopental hypnotic requirements. Anesth Analg 77:784–787

    Article  CAS  PubMed  Google Scholar 

  118. Christensen LQ, Bonde J, Kampmann JP (1993) Drug interactions with inhalational anaesthetics. Acta Anaesthesiol Scand 37:231–244

    Article  CAS  PubMed  Google Scholar 

  119. Wood M (1991) Pharmacokinetic drug interactions in anaesthetic practice. Clin Pharmacokinet 21:285–307

    Article  CAS  PubMed  Google Scholar 

  120. Hendricks JF, Eger EI, Sonner JM, Shafer SL (2008) Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth Analg 107:494–506

    Article  CAS  Google Scholar 

  121. Davis PJ, Cook DR (1986) Clinical pharmacokinetics of the newer intravenous anaesthetic agents. Clin Pharmacokinet 11:18–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Jann PharmD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jann, M.W. (2016). Clinically Significant Interactions with Anesthetic Agents. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_24

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics