Skip to main content

Clinical Significant Interactions with Opioid Analgesics

  • Chapter
  • First Online:
  • 2630 Accesses

Abstract

This chapter summarizes the pharmacokinetic drug interactions of select opioid agents, focusing on underlying molecular mechanisms (e.g., known metabolic interactions at the enzymatic and transporter levels, such as cytochrome P450 [CYP450], uridine 5’-diphospho-glucuronosyltransferases [UGT], and drug transporters) and drawing a connection to pharmacodynamic interactions in clinical studies. The majority of data has focused on drug metabolism, and there are in vitro data to support the in vivo observations. Many opioids (e.g., codeine) are metabolized by enzymes that are known to exhibit genetic polymorphism, and this additional (gene-drug interaction) factor must be considered. Most data on opioids have focused on their classical analgesic properties, effects on pain threshold, and adverse effects such as somnolence, nausea/vomiting, gastrointestinal motility, or miosis. Additional atypical adverse effects such QTC prolongation (e.g., associated with methadone) or serotonin syndrome (e.g., associated with tramadol) must be considered and can be manifested by pharmacokinetic-associated pharmacodynamic interactions. Information on pharmacokinetic-mediated pharmacodynamic interactions is relatively scarce in the literature compared to the available pharmacokinetic data. The available human data for opioids only represent a small fraction of all the possible drug interactions but one may use various in vitro or in silico approaches to aid the prediction of pharmacokinetic interactions. Evidence that a significant pharmacokinetic interaction is associated with a pharmacodynamic interaction must be appropriately weighted based on limitations in the design of existing studies. This chapter concludes with a proposed clinical decision-making algorithm that may be used to ascertain the clinical significance of pharmacokinetic-mediated pharmacodynamic interactions with opioid analgesics:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Portenoy RK, Ahmed E (2014) Principles of opioid use in cancer pain. J Clin Oncol 32(16):1662–1670

    Article  CAS  PubMed  Google Scholar 

  2. Cheung CW, Qiu Q, Choi SW, Moore B, Goucke R, Irwin W (2014) Chronic opioid therapy for chronic non-cancer pain: a review and comparison of treatment guidelines. Pain Physician 17(5):401–414

    PubMed  Google Scholar 

  3. de Leon-Casasola O (2014) A review of the literature on multiple factors involved in postoperative pain course and duration. Postgrad Med 126(4):42–52

    Article  PubMed  Google Scholar 

  4. Miller E (2004) The world health organization analgesic ladder. J Midwifery Womens Health 49(6):542–545

    Article  PubMed  Google Scholar 

  5. Overholser BR, Foster DR (2011) Opioid pharmacokinetic drug-drug interactions. Am J Manag Care 17(Suppl 11):S276–S287

    PubMed  Google Scholar 

  6. Smith HS (2009) Opioid metabolism. Mayo Clin Proc 84(7):613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rollason V, Samer C, Piquet V, Dayer P, Desmeules J (2008) Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics 9(7):905–933

    Article  CAS  PubMed  Google Scholar 

  8. Trescot AM, Datta S, Lee M, Hansen H (2008) Opioid pharmacology. Pain Physician 11(2 Suppl):S133–S153

    PubMed  Google Scholar 

  9. Kharasch ED, Hoffer C, Whittington D, Sheffels P (2003) Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther 74(6):543–554

    Article  CAS  PubMed  Google Scholar 

  10. Kiang TK, Ensom MH, Chang TK (2005) UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther 106(1):97–132

    Article  CAS  PubMed  Google Scholar 

  11. Coffman BL, Rios GR, King CD, Tephly TR (1997) Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 25(1):1–4

    CAS  PubMed  Google Scholar 

  12. Kilpatrick GJ, Smith TW (2005) Morphine-6-glucuronide: actions and mechanisms. Med Res Rev 25(5):521–544

    Article  CAS  PubMed  Google Scholar 

  13. Smith MT (2000) Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol 27(7):524–528

    Article  CAS  PubMed  Google Scholar 

  14. Osborne R, Joel S, Trew D, Slevin M (1990) Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 47(1):12–19

    Article  CAS  PubMed  Google Scholar 

  15. Brunk SF, Delle M, Wilson WR (1974) Effect of propranolol on morphine metabolism. Clin Pharmacol Ther 16(6):1039–1044

    Article  CAS  PubMed  Google Scholar 

  16. Aasmundstad TA, Storset P (1998) Influence of ranitidine on the morphine-3-glucuronide to morphine-6-glucuronide ratio after oral administration of morphine in humans. Hum Exp Toxicol 17(6):347–352

    Article  CAS  PubMed  Google Scholar 

  17. Vincent J, Hunt T, Teng R, Robarge L, Willavize SA, Friedman HL (1998) The pharmacokinetic effects of coadministration of morphine and trovafloxacin in healthy subjects. Am J Surg 176(6A Suppl):32S–38S

    Article  CAS  PubMed  Google Scholar 

  18. Tighe KE, Webb AM, Hobbs GJ (1999) Persistently high plasma morphine-6-glucuronide levels despite decreased hourly patient-controlled analgesia morphine use after single-dose diclofenac: potential for opioid-related toxicity. Anesth Analg 88(5):1137–1142

    CAS  PubMed  Google Scholar 

  19. Fromm MF, Eckhardt K, Li S, Schanzle G, Hofmann U, Mikus G et al (1997) Loss of analgesic effect of morphine due to coadministration of rifampin. Pain 72(1–2):261–267

    Article  CAS  PubMed  Google Scholar 

  20. Mojaverian P, Feddler IL, Vlasses PH, Rotmensch HH, Rocci ML, Swanson BN et al (1982) Cimetidine does not alter morphine disposition in man. Br J Clin Pharmacol 14(6):809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eckhardt K, Ammon S, Hofmann U, Riebe A, Gugeler N, Mikus G (2000) Gabapentin enhances the analgesic effect of morphine in healthy volunteers. Anesth Analg 91(1):185–191

    CAS  PubMed  Google Scholar 

  22. Drewe J, Ball HA, Beglinger C, Peng B, Kemmler A, Schachinger H et al (2000) Effect of P-glycoprotein modulation on the clinical pharmacokinetics and adverse effects of morphine. Br J Clin Pharmacol 50(3):237–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bhasker CR, McKinnon W, Stone A, Lo AC, Kubota T, Ishizaki T et al (2000) Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10(8):679–685

    Article  CAS  PubMed  Google Scholar 

  24. Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, von Moltke LL et al (2003) Evaluation of 3’-azido-3’-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 31(9):1125–1133

    Article  CAS  PubMed  Google Scholar 

  25. Holthe M, Rakvag TN, Klepstad P, Idle JR, Kaasa S, Krokan HE et al (2003) Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenomics J 3(1):17–26

    Article  CAS  PubMed  Google Scholar 

  26. Holthe M, Klepstad P, Zahlsen K, Borchgrevink PC, Hagen L, Dale O et al (2002) Morphine glucuronide-to-morphine plasma ratios are unaffected by the UGT2B7 H268Y and UGT1A1*28 polymorphisms in cancer patients on chronic morphine therapy. Eur J Clin Pharmacol 58(5):353–536

    Article  CAS  PubMed  Google Scholar 

  27. Darbari DS, Van Schaik RH, Capparelli EV, Rana S, McCarter R, van den Anker J (2008) UGT2B7 promoter variant -840G > A contributes to the variability in hepatic clearance of morphine in patients with sickle cell disease. Am J Hematol 83(3):200–202

    Article  CAS  PubMed  Google Scholar 

  28. Sawyer MB, Innocenti F, Das S, Cheng C, Ramirez J, Pantle-Fisher FH et al (2003) A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther 73(6):566–574

    Article  CAS  PubMed  Google Scholar 

  29. Matic M, Norman E, Rane A, Beck O, Andersson M, Elens L et al (2014) Effect of UGT2B7 -900G > A (−842G > A; rs7438135) on morphine glucuronidation in preterm newborns: results from a pilot cohort. Pharmacogenomics 15(12):1589–1597

    Article  CAS  PubMed  Google Scholar 

  30. Dayer P, Desmeules J, Leemann T, Striberni R (1988) Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI). Biochem Biophys Res Commun 152(1):411–416

    Article  CAS  PubMed  Google Scholar 

  31. Caraco Y, Tateishi T, Guengerich FP, Wood AJ (1996) Microsomal codeine N-demethylation: cosegregation with cytochrome P4503A4 activity. Drug Metab Dispos 24(7):761–764

    CAS  PubMed  Google Scholar 

  32. Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–2831

    Article  CAS  PubMed  Google Scholar 

  33. Eissing T, Lippert J, Willmann S (2012) Pharmacogenomics of codeine, morphine, and morphine-6-glucuronide: model-based analysis of the influence of CYP2D6 activity, UGT2B7 activity, renal impairment, and CYP3A4 inhibition. Mol Diagn Ther 16(1):43–53

    Article  CAS  PubMed  Google Scholar 

  34. Ammon S, Marx C, Behrens C, Hofmann U, Murdter T, Griese EU et al (2002) Diclofenac does not interact with codeine metabolism in vivo: a study in healthy volunteers. BMC Clin Pharmacol 27(2):2

    Google Scholar 

  35. Ammon S, von Richter O, Hofmann U, Thon KP, Eichelbaum M, Mikus G (2000) In vitro interaction of codeine and diclofenac. Drug Metab Dispos 28(10):1149–1152

    Google Scholar 

  36. Sindrup SH, Arendt-Nielsen L, Brosen K, Bierring P, Angelo HR, Eriksson B et al (1992) The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol 42(6):587–591

    Article  CAS  PubMed  Google Scholar 

  37. Kathiramalainathan K, Kaplan HL, Romach MK, Busto UE, Li NY, Sawe J et al (2000) Inhibition of cytochrome P450 2D6 modifies codeine abuse liability. J Clin Psychopharmacol 20(4):435–444

    Article  CAS  PubMed  Google Scholar 

  38. Sindrup SH, Hofmann U, Asmussen J, Mikus G, Brosen K, Nielsen F et al (1996) Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake. Eur J Clin Pharmacol 49(6):503–509

    Article  CAS  PubMed  Google Scholar 

  39. Caraco Y, Sheller J, Wood AJ (1999) Impact of ethnic origin and quinidine coadministration on codeine’s disposition and pharmacodynamic effects. J Pharmacol Exp Ther 290(1):413–422

    CAS  PubMed  Google Scholar 

  40. Fernandes LC, Kilicarslan T, Kaplan HL, Tyndale RF, Sellers EM, Romach MK (2002) Treatment of codeine dependence with inhibitors of cytochrome P450 2D6. J Clin Psychopharmacol 22(3):326–329

    Article  CAS  PubMed  Google Scholar 

  41. Caraco Y, Sheller J, Wood AJ (1997) Pharmacogenetic determinants of codeine induction by rifampin: the impact on codeine’s respiratory, psychomotor and miotic effects. J Pharmacol Exp Ther 281(1):330–336

    CAS  PubMed  Google Scholar 

  42. Madadi P, Ross CJ, Hayden MR, Carleton BC, Gaedigk A, Leeder JS et al (2009) Pharmacogenetics of neonatal opioid toxicity following maternal use of codeine during breastfeeding: a case–control study. Clin Pharmacol Ther 85(1):31–35

    Article  CAS  PubMed  Google Scholar 

  43. Voronov P, Przbylo HJ, Jagannathan N (2007) Apnea in a child after oral codeine: a genetic variant - an ultra-rapid metabolizer. Paediatr Anaesth 17(7):684–687

    Article  PubMed  Google Scholar 

  44. Kelly LE, Rieder M, van den Anker J, Malkin B, Ross C, Neely MN et al (2012) More codeine fatalities after tonsillectomy in North American children. Pediatrics 129(5):e1343–e1347

    Article  PubMed  Google Scholar 

  45. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G (2009) Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med 361(8):827–828

    Article  CAS  PubMed  Google Scholar 

  46. Dalen P, Frengell C, Dahl ML, Sjogvist F (1997) Quick onset of severe abdominal pain after codeine in an ultrarapid metabolizer of debrisoquine. Ther Drug Monit 19(5):543–544

    Article  CAS  PubMed  Google Scholar 

  47. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368(9536):704

    Article  PubMed  Google Scholar 

  48. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE et al (2014) Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 95(4):376–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sindrup SH, Brosen K, Bjerring P, Arendt-Nielsen L, Larsen U, Angelo HR et al (1990) Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48(6):686–693

    Article  CAS  PubMed  Google Scholar 

  50. Poulsen L, Brosen K, Arendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH (1996) Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol 51(3–4):289–295

    Article  CAS  PubMed  Google Scholar 

  51. Poulsen L, Riishede L, Brosen K, Clemensen S, Sindrup SH (1998) Codeine in post-operative pain. Study of the influence of sparteine phenotype and serum concentrations of morphine and morphine-6-glucuronide. Eur J Clin Pharmacol 54(6):451–454

    Article  CAS  PubMed  Google Scholar 

  52. Yue QY, Hasselstron J, Svensson JO, Sawe J (1991) Pharmacokinetics of codeine and its metabolites in Caucasian healthy volunteers: comparisons between extensive and poor hydroxylators of debrisoquine. Br J Clin Pharmacol 31(6):635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen ZR, Somogyi AA, Reynolds G, Bochner F (1991) Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol 31(4):381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mikus G, Trausch B, Rodewald C, Hofmann U, Richter K, Gramatte T et al (1997) Effect of codeine on gastrointestinal motility in relation to CYP2D6 phenotype. Clin Pharmacol Ther 61(4):459–466

    Article  CAS  PubMed  Google Scholar 

  55. Eckhardt K, Li S, Ammon S, Schanzle G, Mikus G, Eichelbaum M (1998) Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 76(1–2):27–33

    Article  CAS  PubMed  Google Scholar 

  56. Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lotsch J, Roots I et al (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265

    Article  CAS  PubMed  Google Scholar 

  57. Lalovic B, Phillips B, Risler LL, Howald W, Shen DD (2004) Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 32(4):447–454

    Article  CAS  PubMed  Google Scholar 

  58. Liukas A, Hagelberg NM, Kuusniemi K, Neuvonen PJ, Olkkola KT (2011) Inhibition of cytochrome P450 3A by clarithromycin uniformly affects the pharmacokinetics and pharmacodynamics of oxycodone in young and elderly volunteers. J Clin Psychopharmacol 31(3):302–308

    Article  CAS  PubMed  Google Scholar 

  59. Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Neuvonen PJ, Laine K et al (2010) Grapefruit juice enhances the exposure to oral oxycodone. Basic Clin Pharmacol Toxicol 107(4):782–788

    Article  CAS  PubMed  Google Scholar 

  60. Kummer O, Hammann F, Moser C, Schaller O, Drewe J, Krahenbuhl S (2011) Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Eur J Clin Pharmacol 67(1):63–71

    Article  CAS  PubMed  Google Scholar 

  61. Saari TI, Gronlund J, Hagelberg NM, Neuvonen M, Laine K, Neuvonen PJ et al (2010) Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol 66(4):387–397

    Article  CAS  PubMed  Google Scholar 

  62. Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Neuvonen PJ, Laine K et al (2010) Oxycodone concentrations are greatly increased by the concomitant use of ritonavir or lopinavir/ritonavir. Eur J Clin Pharmacol 66(10):977–985

    Article  CAS  PubMed  Google Scholar 

  63. Hagelberg NM, Nieminen TH, Saari TI, Neuvonen M, Neuvonen PJ, Laine K et al (2009) Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol 65(3):263–271

    Article  CAS  PubMed  Google Scholar 

  64. Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC et al (2010) The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol 160(4):907–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Heiskanen T, Olkkola KT, Kalso E (1998) Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 64:603–611

    Article  CAS  PubMed  Google Scholar 

  66. Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K (2010) Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol 70(1):78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Laine K, Olkkola KT (2011) Effect of inhibition of cytochrome P450 enzymes 2D6 and 3A4 on the pharmacokinetics of intravenous oxycodone: a randomized, three-phase, crossover, placebo-controlled study. Clin Drug Investig 31(3):143–153

    Article  CAS  PubMed  Google Scholar 

  68. Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K (2011) Miconazole oral gel increases exposure to oral oxycodone by inhibition of CYP2D6 and CYP3A4. Antimicrob Agents Chemother 55(3):1063–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gronlund J, Saari TI, Hagelberg NM, Martikainen IK, Neuvonen PJ, Olkkola KT et al (2010) Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J Clin Pharmacol 50(1):101–108

    Article  CAS  PubMed  Google Scholar 

  70. Nieminen TH, Hagelberg NM, Saari TI, Pertovaara A, Neuvonen M, Laine K et al (2009) Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology 110(6):1371–1378

    Article  CAS  PubMed  Google Scholar 

  71. Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Laine K, Neuvonen PJ et al (2010) St John’s wort greatly reduces the concentrations of oral oxycodone. Eur J Pain 14(8):854–859

    Article  CAS  PubMed  Google Scholar 

  72. Stamer UM, Zhang L, Book M, Lehmann LE, Stuber F, Musshoff F (2013) CYP2D6 genotype dependent oxycodone metabolism in postoperative patients. PLoS One 8(3), e60239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zwisler ST, Enggaard TP, Noehr-Jensen L, Pedersen RS, Mikkelsen S, Nielsen F et al (2009) The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol 104(4):335–344

    Article  CAS  PubMed  Google Scholar 

  74. Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH (2010) Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand 54(2):232–240

    Article  CAS  PubMed  Google Scholar 

  75. Green MD, King CD, Mojarrabi B, MacKenzie PI, Tephly TR (1998) Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos 26(6):507–512

    CAS  PubMed  Google Scholar 

  76. Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, MacKenzie PI (1999) Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31(4):817–899

    Article  CAS  PubMed  Google Scholar 

  77. Hagen N, Thirlwell MP, Dhaliwal HS, Babul N, Harsanyi Z, Darke AC (1995) Steady-state pharmacokinetics of hydromorphone and hydromorphone-3-glucuronide in cancer patients after immediate and controlled-release hydromorphone. J Clin Pharmacol 35(1):37–44

    Article  CAS  PubMed  Google Scholar 

  78. Wright AW, Mather LE, Smith MT (2001) Hydromorphone-3-glucuronide: a more potent neuro-excitant than its structural analogue, morphine-3-glucuronide. Life Sci 69(4):409–420

    Article  CAS  PubMed  Google Scholar 

  79. McCann S, Yaksh TL, von Gunten CF (2010) Correlation between myoclonus and the 3-glucuronide metabolites in patients treated with morphine or hydromorphone: a pilot study. J Opioid Manag 6(2):87–94

    Article  PubMed  Google Scholar 

  80. Miners JO, MacKenzie PI, Knights KM (2010) The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro-in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab Dispos 42(1):196–208

    Google Scholar 

  81. Vandenbossche J, Richards H, Francke S, Van Den Bergh A, Lu CC, Franc MA (2014) The effect of UGT2B7*2 polymorphism on the pharmacokinetics of OROS?hydromorphone in Taiwanese subjects. J Clin Pharmacol 54(10):1170–1179

    Article  CAS  PubMed  Google Scholar 

  82. Stanley TH (2014) The fentanyl story. J Pain 15(12):1215–1226

    Article  CAS  PubMed  Google Scholar 

  83. Labroo RB, Paine MF, Thummel KE, Kharasch ED (1997) Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 25(9):1072–1080

    CAS  PubMed  Google Scholar 

  84. Feierman DE, Lasker JM (1996) Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. Drug Metab Dispos 24(9):932–939

    CAS  PubMed  Google Scholar 

  85. Palkama VJ, Neuvonen PJ, Olkkola KT (1998) The CYP 3A4 inhibitor itraconazole has no effect on the pharmacokinetics of i.v. fentanyl. Br J Anaesth 81(4):598–600

    Article  CAS  PubMed  Google Scholar 

  86. Kharasch ED, Whittington D, Hoffer C (2004) Influence of hepatic and intestinal cytochrome P4503A activity on the acute disposition and effects of oral transmucosal fentanyl citrate. Anesthesiology 101(3):729–737

    Article  CAS  PubMed  Google Scholar 

  87. Ibrahim AE, Feldman J, Karim A, Kharasch ED (2003) Simultaneous assessment of drug interactions with low- and high-extraction opioids: application to parecoxib effects on the pharmacokinetics and pharmacodynamics of fentanyl and alfentanil. Anesthesiology 98(4):853–861

    Article  CAS  PubMed  Google Scholar 

  88. Olkkola KT, Palkama VJ, Neuvonen PJ (1999) Ritonavir’s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology 91(3):681–685

    Article  CAS  PubMed  Google Scholar 

  89. Saari TI, Laine K, Neuvonen M, Neuvonen PJ, Olkkola KT (2008) Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl. Eur J Clin Pharmacol 64(1):25–30

    Article  CAS  PubMed  Google Scholar 

  90. Takane H, Nosaka A, Wakushima H, Hosokawa K, Ieiri I (2005) Rifampin reduces the analgesic effect of transdermal fentanyl. Ann Pharmacother 39(12):2139–2140

    Article  PubMed  Google Scholar 

  91. Guitton J, Buronfosse T, Desage M, Lepape A, Brazier JL, Beaune P (1997) Possible involvement of multiple cytochrome P450S in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 53(11):1613–1619

    Article  CAS  PubMed  Google Scholar 

  92. Subrahmanyam V, Renwick AB, Walter DG, Young PJ, Price RJ, Tonelli AP et al (2001) Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 29(8):1146–1155

    CAS  PubMed  Google Scholar 

  93. Volpe DA, McMahon Tobin GA, Mellon RD, Katki AG, Parker RJ, Colatsky T et al (2011) Uniform assessment and ranking of opioid? Receptor binding constants for selected opioid drugs. Regul Toxicol Pharmacol 59(3):385–390

    Article  CAS  PubMed  Google Scholar 

  94. Noehr-Jensen L, Zwisler ST, Larsen F, Sindrup SH, Damkier P, Brosen K (2009) Escitalopram is a weak inhibitor of the CYP2D6-catalyzed O-demethylation of (+)-tramadol but does not reduce the hypoalgesic effect in experimental pain. Clin Pharmacol Ther 86(6):626–633

    Article  CAS  PubMed  Google Scholar 

  95. Coller J, Michalakas JR, James HM, Farguharson AL, Colvill J, White JM et al (2012) Inhibition of CYP2D6-mediated tramadol O-demethylation in methadone but not buprenorphine maintenance patients. Br J Clin Pharmacol 74(5):835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brosen K (2005) Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 77(4):312–323

    Article  CAS  PubMed  Google Scholar 

  97. Nielsen AG, Pedersen RS, Noehr-Jensen L, Damkier P, Brosen K (2010) Two separate dose-dependent effects of paroxetine: mydriasis and inhibition of tramadol’s O-demethylation via CYP2D6. Eur J Clin Pharmacol 66(7):655–660

    Article  CAS  PubMed  Google Scholar 

  98. Saarikoski T, Saari TI, Hagelberg NM, Neuvonen M, Neuvonen PJ, Scheinin M et al (2013) Rifampicin markedly decreases the exposure to oral and intravenous tramadol. Eur J Clin Pharmacol 69(6):1293–1301

    Article  CAS  PubMed  Google Scholar 

  99. Hagelberg NM, Saarikoski S, Saari TI, Neuvonen M, Neuvonen PJ, Turpeinen M et al (2013) Ticlopidine inhibits both O-demethylation and renal clearance of tramadol, increasing the exposure to it, but itraconazole has no marked effect on the ticlopidine-tramadol interaction. Eur J Clin Pharmacol 69(4):867–875

    Article  PubMed  Google Scholar 

  100. Poulsen L, Arendt-Nielsen L, Brosen K, Sindrup SH (1996) The hypoalgesic effect of tramadol in relation to CYP2D6. Clin Pharmacol Ther 60(6):636–644

    Article  CAS  PubMed  Google Scholar 

  101. Pedersen RS, Damkier P, Brosen K (2006) Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol 62(7):513–521

    Article  CAS  PubMed  Google Scholar 

  102. Enggaard TP, Poulsen L, Arendt-Nielsen L, Brosen K, Ossig J, Sindrup SH (2006) The analgesic effect of tramadol after intravenous injection in healthy volunteers in relation to CYP2D6. Anesth Analg 102(1):146–150

    Article  CAS  PubMed  Google Scholar 

  103. Garcia-Quetglas E, Azanza JR, Sadaba B, Munoz MJ, Campanero MA (2007) Pharmacokinetics of tramadol enantiomers and their respective phase I metabolites in relation to CYP2D6 phenotype. Pharmacol Res 55(2):112–130

    Google Scholar 

  104. Halling J, Weihe P, Brosen K (2008) CYP2D6 polymorphism in relation to tramadol metabolism: a study of faroese patients. Ther Drug Monit 30(3):271–275

    Article  CAS  PubMed  Google Scholar 

  105. Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F (2007) Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82(1):41–47

    Article  CAS  PubMed  Google Scholar 

  106. Gan SH, Ismail R, Wan Adnan WA, Zulmi W (2007) Impact of CYP2D6 genetic polymorphism on tramadol pharmacokinetics and pharmacodynamics. Mol Diagn Ther 11(3):171–181

    Article  CAS  PubMed  Google Scholar 

  107. Kirchheiner J, Keulen JT, Bauer S, Roots I, Brockmoller J (2008) Effects of the CYP2D6 gene duplication on the pharmacokinetics and pharmacodynamics of tramadol. J Clin Psychopharmacol 28(1):78–83

    Article  CAS  PubMed  Google Scholar 

  108. Scott CC, Robbins EB, Chen KK (1948) Pharmacologic comparison of the optical isomers of methadon. J Pharmacol Exp Ther 93(3):282–286

    CAS  PubMed  Google Scholar 

  109. Ebert B, Thorkildsen C, Andersen S, Christrup LL, Hjeds H (1998) Opioid analgesics as noncompetitive N-methyl-D-aspartate (NMDA) antagonists. Biochem Pharmacol 56(5):553–559

    Article  CAS  PubMed  Google Scholar 

  110. Slotkin TA, Seidler FJ, Whitmore WL (1978) Methadone inhibits serotonin and norephinephrine uptake into rat brain synaptosomes and synaptic vesicles in vitro but not in vivo. Eur J Pharmacol 49(4):357–362

    Google Scholar 

  111. Fredheim OM, Moksnes K, Borchgrevink PC, Kaasa S, Dale O (2008) Clinical pharmacology of methadone for pain. Acta Anaesthesiol Scand 52(7):879–889

    Article  CAS  PubMed  Google Scholar 

  112. Bell J (2014) Pharmacological maintenance treatments of opiate addiction. Br J Clin Pharmacol 77(2):253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gerber JG, Rhodes RJ, Gal J (2004) Stereoselective metabolism of methadone N-demethylation by cytochrome P4502B6 and 2C19. Chirality 16(1):36–44

    Article  CAS  PubMed  Google Scholar 

  114. Kharasch ED, Hoffer C, Whittington D, Sheffels P (2004) Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther 76(3):250–269

    Article  CAS  PubMed  Google Scholar 

  115. Totah RA, Sheffels P, Roberts T, Whittington D, Thummel K, Kharasch ED (2008) Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology 108(3):363–374

    Article  CAS  PubMed  Google Scholar 

  116. Moody DE, Alburges ME, Parker RJ, Collins JM, Strong JM (1997) The involvement of cytochrome P450 3A4 in the N-demethylation of L-alpha-acetylmethadol (LAAM), norLAAM, and methadone. Drug Metab Dispos 25(12):1347–1353

    CAS  PubMed  Google Scholar 

  117. Iribarne C, Berthou F, Baird S, Dreano Y, Picart D, Bail JP et al (1996) Involvement of cytochrome P450 3A4 enzyme in the N-demethylation of methadone in human liver microsomes. Chem Res Toxicol 9(2):365–373

    Article  CAS  PubMed  Google Scholar 

  118. Foster DJ, Somogyi AA, Bochner F (1999) Methadone N-demethylation in human liver microsomes: lack of stereoselectivity and involvement of CYP3A4. Br J Clin Pharmacol 47(4):403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chang Y, Fang WB, Lin SN, Moody DE (2011) Stereo-selective metabolism of methadone by human liver microsomes and cDNA-expressed cytochrome P450s: a reconciliation. Basic Clin Pharmacol Toxicol 108(1):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang JS, DeVane CL (2003) Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab Dispos 31(6):742–747

    Google Scholar 

  121. Cobb MN, Desai J, Brown LS, Zannikos PN, Rainey PM (1998) The effect of fluconazole on the clinical pharmacokinetics of methadone. Clin Pharmacol Ther 63(6):655–662

    Article  CAS  PubMed  Google Scholar 

  122. Liu P, Foster G, Labadie R, Somoza E, Sharma A (2007) Pharmacokinetic interaction between voriconazole and methadone at steady state in patients on methadone therapy. Antimicrob Agents Chemother 51(1):110–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Begre S, von Bardeleben U, Ladewig D, Jaquet-Rochat S, Cosendai-Savary L, Golay KP et al (2002) Paroxetine increases steady-state concentrations of (R)-methadone in CYP2D6 extensive but not poor metabolizers. J Clin Psychopharmacol 22(2):211–215

    Article  CAS  PubMed  Google Scholar 

  124. Uehlinger C, Crettol S, Chassot P, Brocard M, Koeb L, Brawand-Amey M et al (2007) Increased (R)-methadone plasma concentrations by quetiapine in cytochrome P450s and ABCB1 genotyped patients. J Clin Psychopharmacol 27(3):273–278

    Article  CAS  PubMed  Google Scholar 

  125. Hamilton SP, Nunes EV, Janal M, Weber L (2000) The effect of sertraline on methadone plasma levels in methadone-maintenance patients. Am J Addict 9(1):63–69

    Article  CAS  PubMed  Google Scholar 

  126. Hendrix CW, Wakeford J, Wire MB, Lou Y, Bigelow GE, Martinez E et al (2004) Pharmacokinetics and pharmacodynamics of methadone enantiomers after coadministration with amprenavir in opioid-dependent subjects. Pharmacotherapy 24(9):1110–1121

    Article  CAS  PubMed  Google Scholar 

  127. McCance-Katz EF, Rainey PM, Friedland G, Jatlow P (2003) The protease inhibitor lopinavir-ritonavir may produce opiate withdrawal in methadone-maintained patients. Clin Infect Dis 37(4):476–482

    Article  CAS  PubMed  Google Scholar 

  128. Clarke S, Mulcahy F, Bergin C, Reynolds H, Boyle N, Barry M et al (2002) Absence of opioid withdrawal symptoms in patients receiving methadone and the protease inhibitor lopinavir-ritonavir. Clin Infect Dis 34(8):1143–1145

    Article  CAS  PubMed  Google Scholar 

  129. Kharasch ED, Stubbert K (2013) Cytochrome P4503A does not mediate the interaction between methadone and ritonavir-lopinavir. Drug Metab Dispos 41(12):2166–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kharasch ED, Walker A, Whittington D, Hoffer C, Bedynek PS (2009) Methadone metabolism and clearance are induced by nelfinavir despite inhibition of cytochrome P4503A (CYP3A) activity. Drug Alcohol Depend 101(3):158–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McCance-Katz EF, Rainey PM, Smith P, Morse G, Friedland G, Gourevitch M et al (2004) Drug interactions between opioids and antiretroviral medications: interaction between methadone, LAAM, and nelfinavir. Am J Addict 13(2):163–180

    Article  PubMed  Google Scholar 

  132. Hsyu PH, Lillibridge J, Daniels E, Kerr BM (2006) Pharmacokinetic interaction of nelfinavir and methadone in intravenous drug users. Biopharm Drug Dispos 27(2):61–68

    Article  CAS  PubMed  Google Scholar 

  133. Jamois C, Smith P, Morrison R, Riek M, Patel A, Schmitt C et al (2009) Effect of saquinavir/ritonavir (1000/100 mg bid) on the pharmacokinetics of methadone in opiate-dependent HIV-negative patients on stable methadone maintenance therapy. Addict Biol 14(3):321–327

    Article  CAS  PubMed  Google Scholar 

  134. Gerber JG, Rosenkranz S, Aberg J, D’Amico R, Mildvan D, Gulick R et al (2001) Effect of ritonavir/saquinavir on stereoselective pharmacokinetics of methadone: results of AIDS Clinical Trials Group (ACTG) 401. J Acquir Immune Defic Syndr 27(2):153–160

    Article  CAS  PubMed  Google Scholar 

  135. Friedland G, Andrews L, Schreibman T, Agarwala S, Daley L, Child M et al (2005) Lack of an effect of atazanavir on steady-state pharmacokinetics of methadone in patients chronically treated for opiate addiction. AIDS 19(15):1635–1641

    Article  CAS  PubMed  Google Scholar 

  136. Kharasch ED, Bedynek PS, Hoffer C, Walker A, Whittington D (2012) Lack of indinavir effects on methadone disposition despite inhibition of hepatic and intestinal cytochrome P4503A (CYP3A). Anesthesiology 116(2):432–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shelton MJ, Cloen D, DiFrancesco R, Berenson CS, Esch A, de Caprariis PJ et al (2004) The effects of once-daily saquinavir/minidose ritonavir on the pharmacokinetics of methadone. J Clin Pharmacol 44(3):293–304

    Article  CAS  PubMed  Google Scholar 

  138. Smith PF, Kearney BP, Liaw S, Cloen D, Bullock JM, Haas CE et al (2004) Effect of tenofovir disoproxil fumarate on the pharmacokinetics and pharmacodynamics of total, R-, and S-methadone. Pharmacotherapy 24(8):970–977

    Article  CAS  PubMed  Google Scholar 

  139. Schwartz EL, Brechbuhl AB, Kahl P, Miller MA, Selwyn PA, Friedland GH (1992) Pharmacokinetic interactions of zidovudine and methadone in intravenous drug-using patients with HIV infection. J Acquir Immune Defic Syndr 5(6):619–626

    CAS  PubMed  Google Scholar 

  140. Song I, Mark S, Chen S, Savina P, Wajima T, Peppercorn A et al (2013) Dolutegravir does not affect methadone pharmacokinetics in opioid-dependent, HIV-seronegative subjects. Drug Alcohol Depend 133(2):781–784

    Article  CAS  PubMed  Google Scholar 

  141. Anderson MS, Mabalot Luk JA, Hanley WD, Jin B, Riesenberg RA, Wenning LA et al (2010) Effect of raltegravir on the pharmacokinetics of methadone. J Clin Pharmacol 50(12):1461–1466

    Article  CAS  PubMed  Google Scholar 

  142. Stocker H, Kruse G, Kreckel P, Herzmann C, Arasteh K, Claus J et al (2004) Nevirapine significantly reduces the levels of racemic methadone and (R)-methadone in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 48(11):4148–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Arroyo E, Valenzuela B, Portilla J, Climent-Grana E, Perez-Ruixo JJ, Merino E (2007) Pharmacokinetics of methadone in human-immunodeficiency-virus-infected patients receiving nevirapine once daily. Eur J Clin Pharmacol 63(7):669–675

    Article  CAS  PubMed  Google Scholar 

  144. Clarke SM, Mulcahy FM, Tjia J, Reynolds HE, Gibbons SE, Barry MG et al (2001) Pharmacokinetic interactions of nevirapine and methadone and guidelines for use of nevirapine to treat injection drug users. Clin Infect Dis 33(9):1595–1597

    Article  CAS  PubMed  Google Scholar 

  145. McCance-Katz EF, Rainey PM, Smith P, Morse GD, Friedland G, Boyarsky B et al (2006) Drug interactions between opioids and antiretroviral medications: interaction between methadone, LAAM, and delavirdine. Am J Addict 15(1):23–34

    Article  PubMed  Google Scholar 

  146. Vourvahis M, Wang R, Gruener DM, Bruce RD, Haider S, Tawadrous M (2012) Effect of lersivirine co-administration on pharmacokinetics of methadone in healthy volunteers. Drug Alcohol Depend 126(1–2):183–188

    Article  CAS  PubMed  Google Scholar 

  147. Eap CB, Broly F, Mino A, Hammig R, Deglon JJ, Uehlinger C et al (2001) Cytochrome P450 2D6 genotype and methadone steady-state concentrations. J Clin Psychopharmacol 21(2):229–234

    Article  CAS  PubMed  Google Scholar 

  148. Crettol S, Deglon JJ, Besson J, Croquette-Krokar M, Hammig R, Gothuey I et al (2006) ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 80(6):668–681

    Article  CAS  PubMed  Google Scholar 

  149. Cao YJ, Smith PF, Wire MB, Lou Y, Lancaster CT, Causon RC et al (2008) Pharmacokinetics and pharmacodynamics of methadone enantiomers after coadministration with fosamprenavir-ritonavir in opioid-dependent subjects. Pharmacotherapy 28(7):863–874

    Article  CAS  PubMed  Google Scholar 

  150. Rainey PM, Friedland G, Snidow JW, McCance-Katz EF, Mitra AK, Andrews L et al (2002) The pharmacokinetics of methadone following co-administration with a lamivudine/zidovudine combination tablet in opiate-dependent subjects. Am J Addict 11(1):66–74

    Article  PubMed  Google Scholar 

  151. Harnack LJ, Rydell SA, Stang J (2001) Prevalence of use of herbal products by adults in the Minneapolis/St Paul, Minn, metropolitan area. Mayo Clin Proc 76:688–694

    Article  CAS  PubMed  Google Scholar 

  152. Kiang TK, Wilby KJ, Ensom MHH (2015) Clinical Pharmacokinetic and pharmacodynamic drug interactions associated with antimalarials. Springer International Publishing, Switzerland. ISBN 978-3-319-10526-0

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary H. H. Ensom PharmD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiang, T.K.L., Ensom, M.H.H. (2016). Clinical Significant Interactions with Opioid Analgesics. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_20

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics