Skip to main content

Abstract

Benzodiazepines are a class of lipophilic compounds used for a variety of indications including anxiety disorders, insomnia, epilepsy, musculoskeletal disorders, and as sedatives during surgery. The chemical nucleus of each benzodiazepine as well as their pharmacodynamic activity is identical. However, alterations to this basic structure lead to numerous benzodiazepines with different pharmacokinetic properties and lipid solubility resulting in agents with differing rates of elimination, concentrations, volumes of distribution, and potencies. In this chapter we will review the varied kinetics of available benzodiazepines and discuss the metabolic pathways leading to excretion of these medications. This review includes the enzymes (Phase I and Phase II) responsible for metabolism of the parent compound and their intermediates. We also review the pharmacologic and pharmacokinetic activity of the intermediate metabolites. Furthermore we will identify pharmacokinetic interactions of benzodiazepines including: drug-drug interactions, P-gylcoprotein interactions, protein-binding interactions, and food/herbal interactions. Other factors that may require alterations in benzodiazepine dosing such as weight, sex, age, smoking status, genetic polymorphisms, and pharmacokinetic interactions will similarly be discussed. Finally we will identify the clinical monitoring that is required for individuals being prescribed benzodiazepines including respiratory depression, sedation, and withdrawal. The goal of this chapter is to give the reader a background of the factors that should be considered when choosing or monitoring the available benzodiazepines in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ban TA (2006) The role of serendipity in drug discovery. Dialogues Clin Neurosci 8(3):335–344

    PubMed  PubMed Central  Google Scholar 

  2. Hayer E, Adams D (1998) Sedative hypnotics. In: Quitkin F, Adams D, Bowden C et al (eds) Current psychotherapeutic drugs. American Psychiatric Press Inc, Washington DC

    Google Scholar 

  3. Riss J, Cloyd J, Gates J, Collins S (2008) Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand 118(2):69–86

    Article  CAS  PubMed  Google Scholar 

  4. Greenblatt DJ, Miller LG, Shader RI (1990) Neurochemical and pharmacokinetic correlates of the clinical action of benzodiazepine hypnotic drugs. Am J Med 88(3A):18S–24S

    Article  CAS  PubMed  Google Scholar 

  5. Mandrioli R, Mercolini L, Raggi MA (2008) Benzodiazepine metabolism: an analytical perspective. Curr Drug Metab 9(8):827–844

    Article  CAS  PubMed  Google Scholar 

  6. Greenblatt DJ, Harmatz JS, Shader RI (1991) Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly. Therapeutic considerations (Part I). Clin Pharmacokinet 21(3):165–177

    Article  CAS  PubMed  Google Scholar 

  7. Xanax [package insert] (2013) Pfizer, New York. http://labeling.pfizer.com/ShowLabeling.aspx?id=547. Date Accessed: May 2015

  8. Greenblatt DJ, Wright CE (1993) Clinical pharmacokinetics of alprazolam. Therapeutic implications. Clin Pharmacokinet 24(6):453–471

    Article  CAS  PubMed  Google Scholar 

  9. Gorski JC, Jones DR, Hamman MA, Wrighton SA, Hall SD (1999) Biotransformation of alprazolam by members of the human cytochrome P4503A subfamily. Xenobiotica Fate Foreign Compounds Biol Syst 29(9):931–944

    Article  CAS  Google Scholar 

  10. Molanaei H, Stenvinkel P, Qureshi AR et al (2012) Metabolism of alprazolam (a marker of CYP3A4) in hemodialysis patients with persistent inflammation. Eur J Clin Pharmacol 68(5):571–577

    Article  CAS  PubMed  Google Scholar 

  11. Baskin SI, Esdale A (1982) Is chlordiazepoxide the rational choice among benzodiazepines? Pharmacotherapy 2(2):110–119

    Article  CAS  PubMed  Google Scholar 

  12. Greenblatt DJ, Shader RI, Franke K, Harmatz JS (1978) Pharmacokinetics of chlordiazepoxide and metabolites following single and multiple oral doses. Int J Clin Pharmacol Biopharm 16(10):486–493

    CAS  PubMed  Google Scholar 

  13. Vozeh S (1981) Pharmacokinetic of benzodiazepines in old age. Schweiz Med Wochenschr 111(47):1789–1793

    CAS  PubMed  Google Scholar 

  14. Greenblatt DJ, Blaskovich PD, Nuwayser ES, Harmatz JS, Chen G, Zinny MA (2005) Clonazepam pharmacokinetics: comparison of subcutaneous microsphere injection with multiple-dose oral administration. J Clin Pharmacol 45(11):1288–1293

    Article  CAS  PubMed  Google Scholar 

  15. Crevoisier C, Delisle MC, Joseph I, Foletti G (2003) Comparative single-dose pharmacokinetics of clonazepam following intravenous, intramuscular and oral administration to healthy volunteers. Eur Neurol 49(3):173–177

    Article  CAS  PubMed  Google Scholar 

  16. Seree EJ, Pisano PJ, Placidi M, Rahmani R, Barra YA (1993) Identification of the human and animal hepatic cytochromes P450 involved in clonazepam metabolism. Fundam Clin Pharmacol 7(2):69–75

    Article  CAS  PubMed  Google Scholar 

  17. Longo LP, Johnson B (2000) Addiction: Part I. Benzodiazepines--side effects, abuse risk and alternatives. Am Fam Physician 61(7):2121–2128

    CAS  PubMed  Google Scholar 

  18. Pradel V, Delga C, Rouby F, Micallef J, Lapeyre-Mestre M (2010) Assessment of abuse potential of benzodiazepines from a prescription database using ‘doctor shopping’ as an indicator. CNS Drugs 24(7):611–620

    Article  PubMed  Google Scholar 

  19. Greenblatt DJ, Divoll MK, Soong MH, Boxenbaum HG, Harmatz JS, Shader RI (1988) Desmethyldiazepam pharmacokinetics: studies following intravenous and oral desmethyldiazepam, oral clorazepate, and intravenous diazepam. J Clin Pharmacol 28(9):853–859

    Article  CAS  PubMed  Google Scholar 

  20. Frey HH, Scherkl R (1988) Clorazepate, correlation between metabolism and anticonvulsant activity. Eur J Pharmacol 158(3):213–216

    Article  CAS  PubMed  Google Scholar 

  21. Greenblatt DJ (1978) Determination of desmethyldiazepam in plasma by electron-capture GLC: application to pharmacokinetic studies of clorazepate. J Pharm Sci 67(3):427–429

    Article  CAS  PubMed  Google Scholar 

  22. Greenblatt DJ, Shader RI, Divoll M, Harmatz JS (1981) Benzodiazepines: a summary of pharmacokinetic properties. Br J Clin Pharmacol 11(Suppl 1):11S–16S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ono S, Hatanaka T, Miyazawa S et al (1996) Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica Fate Foreign Compounds Biol Syst 26(11):1155–1166

    Article  CAS  Google Scholar 

  24. Schmider J, Greenblatt DJ, von Moltke LL, Shader RI (1996) Relationship of in vitro data on drug metabolism to in vivo pharmacokinetics and drug interactions: implications for diazepam disposition in humans. J Clin Psychopharmacol 16(4):267–272

    Article  CAS  PubMed  Google Scholar 

  25. Beischlag TV, Kalow W, Mahon WA, Inaba T (1992) Diazepam metabolism by rat and human liver in vitro: inhibition by mephenytoin. Xenobiotica Fate Foreign Compounds Biol Syst 22(5):559–567

    Article  CAS  Google Scholar 

  26. Miura M, Otani K, Ohkubo T (2005) Identification of human cytochrome P450 enzymes involved in the formation of 4-hydroxyestazolam from estazolam. Xenobiotica Fate Foreign Compounds Biol Syst 35(5):455–465

    Article  CAS  Google Scholar 

  27. Greenblatt DJ, Divoll M, Harmatz JS, MacLaughlin DS, Shader RI (1981) Kinetics and clinical effects of flurazepam in young and elderly noninsomniacs. Clin Pharmacol Ther 30(4):475–486

    Article  CAS  PubMed  Google Scholar 

  28. Miller LG, Greenblatt DJ, Abernethy DR et al (1988) Kinetics, brain uptake, and receptor binding characteristics of flurazepam and its metabolites. Psychopharmacology (Berl) 94(3):386–391

    Article  CAS  Google Scholar 

  29. Chan K, Jones RD (1993) Simultaneous determination of flumazenil, midazolam and metabolites in human biological fluids by liquid chromatography. J Chromatogr 619(1):154–160

    Article  CAS  PubMed  Google Scholar 

  30. Ziegler WH, Schalch E, Leishman B, Eckert M (1983) Comparison of the effects of intravenously administered midazolam, triazolam and their hydroxy metabolites. Br J Clin Pharmacol 16(Suppl 1):63S–69S

    Article  PubMed  PubMed Central  Google Scholar 

  31. Johnson TN, Rostami-Hodjegan A, Goddard JM, Tanner MS, Tucker GT (2002) Contribution of midazolam and its 1-hydroxy metabolite to preoperative sedation in children: a pharmacokinetic-pharmacodynamic analysis. Br J Anaesth 89(3):428–437

    Article  CAS  PubMed  Google Scholar 

  32. Klieber S, Hugla S, Ngo R et al (2008) Contribution of the N-glucuronidation pathway to the overall in vitro metabolic clearance of midazolam in humans. Drug Metab Dispos Biol Fate Chem 36(5):851–862

    Article  CAS  PubMed  Google Scholar 

  33. Kato K, Yasui-Furukori N, Fukasawa T et al (2003) Effects of itraconazole on the plasma kinetics of quazepam and its two active metabolites after a single oral dose of the drug. Ther Drug Monit 25(4):473–477

    Article  CAS  PubMed  Google Scholar 

  34. Miura M, Ohkubo T (2004) In vitro metabolism of quazepam in human liver and intestine and assessment of drug interactions. Xenobiotica Fate Foreign Compounds Biol Syst 34(11–12):1001–1011

    Article  CAS  Google Scholar 

  35. Perloff MD, von Moltke LL, Court MH, Kotegawa T, Shader RI, Greenblatt DJ (2000) Midazolam and triazolam biotransformation in mouse and human liver microsomes: relative contribution of CYP3A and CYP2C isoforms. J Pharmacol Exp Ther 292(2):618–628

    CAS  PubMed  Google Scholar 

  36. Patki KC, Von Moltke LL, Greenblatt DJ (2003) In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5. Drug Metab Dispos Biol Fate Chem 31(7):938–944

    Article  CAS  PubMed  Google Scholar 

  37. Greenblatt DJ, Shader RI, Franke K et al (1979) Pharmacokinetics and bioavailability of intravenous, intramuscular, and oral lorazepam in humans. J Pharm Sci 68(1):57–63

    Article  CAS  PubMed  Google Scholar 

  38. Chung JY, Cho JY, Yu KS et al (2005) Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin Pharmacol Ther 77(6):486–494

    Article  CAS  PubMed  Google Scholar 

  39. Uchaipichat V, Suthisisang C, Miners JO (2013) The glucuronidation of R- and S-lorazepam: human liver microsomal kinetics, UDP-glucuronosyltransferase enzyme selectivity, and inhibition by drugs. Drug Metab Dispos Biol Fate Chem 41(6):1273–1284

    Article  CAS  PubMed  Google Scholar 

  40. Court MH, Duan SX, Guillemette C et al (2002) Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos Biol Fate Chem 30(11):1257–1265

    Article  CAS  PubMed  Google Scholar 

  41. Alvan G, Odar-Cederlof I (1978) The pharmacokinetic profile of oxazepam. Acta Psychiatr Scand Suppl 274:47–55

    Article  CAS  PubMed  Google Scholar 

  42. Greenblatt DJ, Divoll M, Harmatz JS, Shader RI (1980) Oxazepam kinetics: effects of age and sex. J Pharmacol Exp Ther 215(1):86–91

    CAS  PubMed  Google Scholar 

  43. Locniskar A, Greenblatt DJ (1990) Oxidative versus conjugative biotransformation of temazepam. Biopharm Drug Dispos 11(6):499–506

    Article  CAS  PubMed  Google Scholar 

  44. CDC/NCHS, National Health and Nutrition Examination Survey (2013) http://www.cdc.gov/nchs/data/hus/hus13.pdf – 092, 2015

  45. Olfson M, King M, Schoenbaum M (2015) Benzodiazepine use in the United States. JAMA Psychiatry 72(2):136–142

    Article  PubMed  Google Scholar 

  46. French DD, Chirikos TN, Spehar A, Campbell R, Means H, Bulat T (2005) Effect of concomitant use of benzodiazepines and other drugs on the risk of injury in a veterans population. Drug Saf 28(12):1141–1150

    Article  CAS  PubMed  Google Scholar 

  47. Fenner KS, Troutman MD, Kempshall S et al (2009) Drug-drug interactions mediated through P-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther 85(2):173–181

    Article  CAS  PubMed  Google Scholar 

  48. Lima SA, Cordeiro-da-Silva A, de Castro B, Gameiro P (2008) Benzodiazepine-mediated structural changes in the multidrug transporter P-glycoprotein: an intrinsic fluorescence quenching analysis. J Membr Biol 223(3):117–125

    Article  CAS  PubMed  Google Scholar 

  49. Lima SA, Tavares J, Gameiro P, de Castro B, Cordeiro-da-Silva A (2008) Flurazepam inhibits the P-glycoprotein transport function: an insight to revert multidrug-resistance phenotype. Eur J Pharmacol 581(1–2):30–36

    Article  CAS  PubMed  Google Scholar 

  50. Rational Use of Benzodiazepines (1996) World Health Organization

    Google Scholar 

  51. Patsalos PN, Perucca E (2003) Clinically important drug interactions in epilepsy: general features and interactions between antiepileptic drugs. Lancet Neurol 2(6):347–356

    Article  CAS  PubMed  Google Scholar 

  52. Greenblatt DJ, Koch-Weser J (1974) Clinical toxicity of chlordiazepoxide and diazepam in relation to serum albumin concentration: a report from the Boston Collaborative Drug Surveillance Program. Eur J Clin Pharmacol 7(4):259–262

    Article  CAS  PubMed  Google Scholar 

  53. Ogden CL, Carroll MD, Kit BK, Flegal KM (2014) Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311(8):806–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hanley MJ, Abernethy DR, Greenblatt DJ (2010) Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 49(2):71–87

    Article  CAS  PubMed  Google Scholar 

  55. Augustin P, Desmard M, Arapis K, Fournier P, Ribeiro-Parenti L, Montravers P (2013) Prolonged benzodiazepine coma as a complication of morbid obesity. Obes Surg 23(9):1452–1453

    Article  PubMed  Google Scholar 

  56. Brill MJ, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CA (2012) Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet 51(5):277–304

    Article  CAS  PubMed  Google Scholar 

  57. Whitley H, Lindsey W (2009) Sex-based differences in drug activity. Am Fam Physician 80(11):1254–1258

    PubMed  Google Scholar 

  58. Greenblatt DJ, von Moltke LL (2008) Gender has a small but statistically significant effect on clearance of CYP3A substrate drugs. J Clin Pharmacol 48(11):1350–1355

    Article  CAS  PubMed  Google Scholar 

  59. Greenblatt DJ, Harmatz JS, Singh NN et al (2014) Gender differences in pharmacokinetics and pharmacodynamics of zolpidem following sublingual administration. J Clin Pharmacol 54(3):282–290

    Article  CAS  PubMed  Google Scholar 

  60. Greenblatt DJ, Harmatz JS, von Moltke LL et al (2000) Comparative kinetics and response to the benzodiazepine agonists triazolam and zolpidem: evaluation of sex-dependent differences. J Pharmacol Exp Ther 293(2):435–443

    CAS  PubMed  Google Scholar 

  61. Ochs HR, Greenblatt DJ, Knuchel M (1985) Kinetics of diazepam, midazolam, and lorazepam in cigarette smokers. Chest 87(2):223–226

    Article  CAS  PubMed  Google Scholar 

  62. Schein JR (1995) Cigarette smoking and clinically significant drug interactions. Ann Pharmacother 29(11):1139–1148

    CAS  PubMed  Google Scholar 

  63. Lucas C, Martin JL (2013) Smoking and drug interactions. Aust Prescr 36:102–104

    Article  Google Scholar 

  64. Andersen V, Pedersen N, Larsen NE, Sonne J, Larsen S (2002) Intestinal first pass metabolism of midazolam in liver cirrhosis – effect of grapefruit juice. Br J Clin Pharmacol 54(2):120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yasui N, Kondo T, Furukori H et al (2000) Effects of repeated ingestion of grapefruit juice on the single and multiple oral-dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology (Berl) 150(2):185–190

    Article  CAS  Google Scholar 

  66. Dahan A, Altman H (2004) Food-drug interaction: grapefruit juice augments drug bioavailability--mechanism, extent and relevance. Eur J Clin Nutr 58(1):1–9

    Article  CAS  PubMed  Google Scholar 

  67. Penzak SR, Robertson SM, Hunt JD et al (2010) Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir-ritonavir exposure in healthy subjects. Pharmacotherapy 30(8):797–805

    Article  PubMed  PubMed Central  Google Scholar 

  68. Almeida JC, Grimsley EW (1996) Coma from the health food store: interaction between kava and alprazolam. Ann Intern Med 125(11):940–941

    Article  CAS  PubMed  Google Scholar 

  69. Dresser GK, Schwarz UI, Wilkinson GR, Kim R (2001) St. John’s wort induces intestinal and hepatic CYP3A4 and P-glycoprotein in healthy volunteers. Clin Pharmacol Ther 2001;69:P23

    Google Scholar 

  70. Markowitz JS, Donovan JL, DeVane CL et al (2003) Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA 290(11):1500–1504

    Article  CAS  PubMed  Google Scholar 

  71. Kawaguchi A, Ohmori M, Tsuruoka S et al (2004) Drug interaction between St John’s Wort and quazepam. Br J Clin Pharmacol 58(4):403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tanaka E (2002) Toxicological interactions between alcohol and benzodiazepines. J Toxicol Clin Toxicol 40(1):69–75

    Article  CAS  PubMed  Google Scholar 

  73. Reynaud M, Petit G, Potard D, Courty P (1998) Six deaths linked to concomitant use of buprenorphine and benzodiazepines. Addiction 93(9):1385–1392

    Article  CAS  PubMed  Google Scholar 

  74. Naso AR (2008) Optimizing patient safety by preventing combined use of intramuscular olanzapine and parenteral benzodiazepines. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm 65(12):1180–1183

    Article  CAS  Google Scholar 

  75. Li XQ, Andersson TB, Ahlstrom M, Weidolf L (2004) Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos Biol Fate Chem 32(8):821–827

    Article  CAS  PubMed  Google Scholar 

  76. Fukasawa T, Yasui-Furukori N, Aoshima T, Suzuki A, Tateishi T, Otani K (2004) Single oral dose pharmacokinetics of quazepam is influenced by CYP2C19 activity. Ther Drug Monit 26(5):529–533

    Article  CAS  PubMed  Google Scholar 

  77. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Phys 76(3):391–396

    Google Scholar 

  78. Eiselt R, Domanski TL, Zibat A et al (2001) Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11(5):447–458

    Article  CAS  PubMed  Google Scholar 

  79. Park JY, Kim KA, Park PW et al (2006) Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin Pharmacol Ther 79(6):590–599

    Article  CAS  PubMed  Google Scholar 

  80. Wong M, Balleine RL, Collins M, Liddle C, Clarke CL, Gurney H (2004) CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin Pharmacol Ther 75(6):529–538

    Article  CAS  PubMed  Google Scholar 

  81. Yu KS, Cho JY, Jang IJ et al (2004) Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin Pharmacol Ther 76(2):104–112

    Article  CAS  PubMed  Google Scholar 

  82. He P, Court MH, Greenblatt DJ, Von Moltke LL (2005) Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 77(5):373–387

    Article  CAS  PubMed  Google Scholar 

  83. Goldstein JA, Ishizaki T, Chiba K et al (1997) Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7(1):59–64

    Article  CAS  PubMed  Google Scholar 

  84. Goldstein JA, de Morais SM (1994) Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4(6):285–299

    Article  CAS  PubMed  Google Scholar 

  85. Bertilsson L, Henthorn TK, Sanz E, Tybring G, Sawe J, Villen T (1989) Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquine, hydroxylation phenotype. Clin Pharmacol Ther 45(4):348–355

    Article  CAS  PubMed  Google Scholar 

  86. Qin XP, Xie HG, Wang W et al (1999) Effect of the gene dosage of CgammaP2C19 on diazepam metabolism in Chinese subjects. Clin Pharmacol Ther 66(6):642–646

    Article  CAS  PubMed  Google Scholar 

  87. Sohn DR, Kusaka M, Ishizaki T et al (1992) Incidence of S-mephenytoin hydroxylation deficiency in a Korean population and the interphenotypic differences in diazepam pharmacokinetics. Clin Pharmacol Ther 52(2):160–169

    Article  CAS  PubMed  Google Scholar 

  88. Inomata S, Nagashima A, Itagaki F et al (2005) CYP2C19 genotype affects diazepam pharmacokinetics and emergence from general anesthesia. Clin Pharmacol Ther 78(6):647–655

    Article  CAS  PubMed  Google Scholar 

  89. de Leon J (2003) Glucuronidation enzymes, genes and psychiatry. Int J Neuropsychopharmacol/Off Sci J Coll Internationale Neuropsychopharmacologicum 6(1):57–72

    Google Scholar 

  90. He X, Hesse LM, Hazarika S et al (2009) Evidence for oxazepam as an in vivo probe of UGT2B15: oxazepam clearance is reduced by UGT2B15 D85Y polymorphism but unaffected by UGT2B17 deletion. Br J Clin Pharmacol 68(5):721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aronoff G, Bennett W, Berns J et al (2007) Drug prescribing in renal failure: dosing guidelines for adults and children, 5th edn. American College of Physicians, Philadelphia

    Google Scholar 

  92. Norton JR, Ward DS, Karan S et al (2006) Differences between midazolam and propofol sedation on upper airway collapsibility using dynamic negative airway pressure. Anesthesiology 104(6):1155–1164

    Article  CAS  PubMed  Google Scholar 

  93. Camacho ME, Morin CM (1995) The effect of temazepam on respiration in elderly insomniacs with mild sleep apnea. Sleep 18(8):644–645

    CAS  PubMed  Google Scholar 

  94. Barbone F, McMahon AD, Davey PG et al (1998) Association of road-traffic accidents with benzodiazepine use. Lancet 352(9137):1331–1336

    Article  CAS  PubMed  Google Scholar 

  95. Leipzig RM, Cumming RG, Tinetti ME (1999) Drugs and falls in older people: a systematic review and meta-analysis: I. Psychotropic drugs. J Am Geriatr Soc 47(1):30–39

    Article  CAS  PubMed  Google Scholar 

  96. Petursson H (1994) The benzodiazepine withdrawal syndrome. Addiction 89(11):1455–1459

    Article  CAS  PubMed  Google Scholar 

  97. Rickels K, Schweizer E, Case WG, Greenblatt DJ (1990) Long-term therapeutic use of benzodiazepines. I. Effects of abrupt discontinuation. Arch Gen Psychiatry 47(10):899–907

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Valdes PharmD, BCPP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Valdes, J., Boggs, D.L., Boggs, A.A., Rey, J.A. (2016). Clinically Significant Interactions with Benzodiazepines. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_19

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics