Skip to main content

Abstract

Second-generation antipsychotics (SGAs) have become the mainstay of treatment for patients with schizophrenia and bipolar disorder. The antipsychotic drugs are often prescribed with other medications to improve clinical efficacy or treat comorbid diseases. Drug combinations can cause pharmacokinetic and/or pharmacodynamic drug-drug interactions. Pharmacokinetic interactions can occur during any pharmacokinetic phases, absorption, distribution, metabolism, or excretion. Smoking, caffeine, and food might have influences on the pharmacokinetic profiles of SGAs. Pharmacodynamic drug-drug interactions occur when drugs act at the same or interrelated sites of action, resulting in additive, synergistic, or antagonistic effects of each drug.

Among the genes involved in pharmacokinetics, the members of cytochrome P450 family display large interindividual and interethnic variations in activity. Other enzyme systems such as UDP-glucuronosyltransferases also exhibit genetic polymorphism with potential clinical relevance in psychopharmacology. The demographic characteristics might also have impact on pharmacokinetic and/or pharmacodynamic profiles of SGAs. The potential pharmacokinetic interactions would guide antipsychotic dosage adjustments. For antipsychotics, optimal dose titration should be guided by measuring plasma concentrations. Therapeutic drug monitoring (TDM) is a valid tool for tailoring the dosage of antipsychotic drugs. Clinicians must have the knowledge of potential interactions of SGAs and carefully monitor patients to minimize potentially adverse events and maximize therapeutic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo JJ et al (2012) Exposure to potentially dangerous drug-drug interactions involving antipsychotics. Psychiatr Serv 63(11):1080–1088

    Article  PubMed  Google Scholar 

  2. Cascorbi I (2011) P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb Exp Pharmacol 201:261–283

    Article  CAS  PubMed  Google Scholar 

  3. Linnet K, Ejsing TB (2008) A review on the impact of P-glycoprotein on the penetration of drugs into the brain. Focus on psychotropic drugs. Eur Neuropsychopharmacol 18(3):157–169

    Article  CAS  PubMed  Google Scholar 

  4. Akamine Y et al (2012) Psychotropic drug-drug interactions involving P-glycoprotein. CNS Drugs 26(11):959–973

    Article  CAS  PubMed  Google Scholar 

  5. Moons T et al (2011) Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 12(8):1193–1211

    Article  CAS  PubMed  Google Scholar 

  6. DeVane CL (2002) Clinical significance of drug binding, protein binding, and binding displacement drug interactions. Psychopharmacol Bull 36(3):5–21

    PubMed  Google Scholar 

  7. Benet LZ, Hoener BA (2002) Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther 71(3):115–121

    Article  CAS  PubMed  Google Scholar 

  8. Caley CF, Cooper CK (2002) Ziprasidone: the fifth atypical antipsychotic. Ann Pharmacother 36(5):839–851

    Article  CAS  PubMed  Google Scholar 

  9. Linnet K (2002) Glucuronidation of olanzapine by cDNA-expressed human UDP-glucuronosyltransferases and human liver microsomes. Hum Psychopharmacol 17(5):233–238

    Article  CAS  PubMed  Google Scholar 

  10. Vermeir M et al (2008) Absorption, metabolism, and excretion of paliperidone, a new monoaminergic antagonist, in humans. Drug Metab Dispos 36(4):769–779

    Article  CAS  PubMed  Google Scholar 

  11. Citrome L (2014) Asenapine review, part I: chemistry, receptor affinity profile, pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 10(6):893–903

    Article  CAS  PubMed  Google Scholar 

  12. Kennedy WK et al (2013) Clinically significant drug interactions with atypical antipsychotics. CNS Drugs 27(12):1021–1048

    Article  CAS  PubMed  Google Scholar 

  13. Spina E, de Leon J (2007) Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol 100(1):4–22

    Article  CAS  PubMed  Google Scholar 

  14. Mauri MC et al (2007) Clinical pharmacokinetics of atypical antipsychotics: a critical review of the relationship between plasma concentrations and clinical response. Clin Pharmacokinet 46(5):359–388

    Article  CAS  PubMed  Google Scholar 

  15. Sheehan JJ et al (2010) Atypical antipsychotic metabolism and excretion. Curr Drug Metab 11(6):516–525

    Article  CAS  PubMed  Google Scholar 

  16. Urichuk L et al (2008) Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab 9(5):410–418

    Article  CAS  PubMed  Google Scholar 

  17. Prior TI, Baker GB (2003) Interactions between the cytochrome P450 system and the second-generation antipsychotics. J Psychiatry Neurosci 28(2):99–112

    PubMed  PubMed Central  Google Scholar 

  18. Murray M (2006) Role of CYP pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical and other antipsychotic agents. J Pharm Pharmacol 58(7):871–885

    Article  CAS  PubMed  Google Scholar 

  19. Rowland A et al (2013) The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int J Biochem Cell Biol 45(6):1121–1132

    Article  CAS  PubMed  Google Scholar 

  20. Desai HD et al (2001) Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective. CNS Drugs 15(6):469–494

    Article  CAS  PubMed  Google Scholar 

  21. Zevin S, Benowitz NL (1999) Drug interactions with tobacco smoking. An update. Clin Pharmacokinet 36(6):425–438

    Article  CAS  PubMed  Google Scholar 

  22. Haslemo T et al (2006) The effect of variable cigarette consumption on the interaction with clozapine and olanzapine. Eur J Clin Pharmacol 62(12):1049–1053

    Article  CAS  PubMed  Google Scholar 

  23. Lowe EJ, Ackman ML (2010) Impact of tobacco smoking cessation on stable clozapine or olanzapine treatment. Ann Pharmacother 44(4):727–732

    Article  CAS  PubMed  Google Scholar 

  24. Wu TH et al (2008) Pharmacokinetics of olanzapine in Chinese male schizophrenic patients with various smoking behaviors. Prog Neuropsychopharmacol Biol Psychiatry 32(8):1889–1893

    Article  CAS  PubMed  Google Scholar 

  25. Shimoda K et al (1999) Lower plasma levels of haloperidol in smoking than in nonsmoking schizophrenic patients. Ther Drug Monit 21(3):293–296

    Article  CAS  PubMed  Google Scholar 

  26. Eugster HP et al (1993) Caffeine, estradiol, and progesterone interact with human CYP1A1 and CYP1A2. Evidence from cDNA-directed expression in Saccharomyces cerevisiae. Drug Metab Dispos 21(1):43–49

    CAS  PubMed  Google Scholar 

  27. Hagg S et al (2000) Effect of caffeine on clozapine pharmacokinetics in healthy volunteers. Br J Clin Pharmacol 49(1):59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Leon J (2004) Atypical antipsychotic dosing: the effect of smoking and caffeine. Psychiatr Serv 55(5):491–493

    Article  PubMed  Google Scholar 

  29. Hanley MJ et al (2011) The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol 7(3):267–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yasui N et al (1999) Lack of significant pharmacokinetic interaction between haloperidol and grapefruit juice. Int Clin Psychopharmacol 14(2):113–118

    Article  CAS  PubMed  Google Scholar 

  31. Lane HY et al (2001) Lack of CYP3A4 inhibition by grapefruit juice and ketoconazole upon clozapine administration in vivo. Drug Metabol Drug Interact 18(3–4):263–278

    CAS  PubMed  Google Scholar 

  32. Lane HY et al (2001) Repeated ingestion of grapefruit juice does not alter clozapine’s steady-state plasma levels, effectiveness, and tolerability. J Clin Psychiatry 62(10):812–817

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt LE, Dalhoff K (2002) Food-drug interactions. Drugs 62(10):1481–1502

    Article  CAS  PubMed  Google Scholar 

  34. Disanto AR, Golden G (2009) Effect of food on the pharmacokinetics of clozapine orally disintegrating tablet 12.5 mg: a randomized, open-label, crossover study in healthy male subjects. Clin Drug Investig 29(8):539–549

    Article  CAS  PubMed  Google Scholar 

  35. Gandelman K et al (2009) The impact of calories and fat content of meals on oral ziprasidone absorption: a randomized, open-label, crossover trial. J Clin Psychiatry 70(1):58–62

    Article  CAS  PubMed  Google Scholar 

  36. Lincoln J et al (2010) How sequential studies inform drug development: evaluating the effect of food intake on optimal bioavailability of ziprasidone. J Psychiatr Pract 16(2):103–114

    Article  PubMed  Google Scholar 

  37. Preskorn S et al (2013) Effect of food on the pharmacokinetics of lurasidone: results of two randomized, open-label, crossover studies. Hum Psychopharmacol 28(5):495–505

    Article  CAS  PubMed  Google Scholar 

  38. Chew ML et al (2008) Anticholinergic activity of 107 medications commonly used by older adults. J Am Geriatr Soc 56(7):1333–1341

    Article  PubMed  Google Scholar 

  39. Kannankeril PJ, Roden DM (2007) Drug-induced long QT and torsade de pointes: recent advances. Curr Opin Cardiol 22(1):39–43

    Article  PubMed  Google Scholar 

  40. Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350(10):1013–1022

    Article  CAS  PubMed  Google Scholar 

  41. France NP, Della Pasqua O (2015) The role of concentration-effect relationships in the assessment of QTc interval prolongation. Br J Clin Pharmacol 79(1):117–131

    Article  PubMed  PubMed Central  Google Scholar 

  42. Flanagan RJ, Dunk L (2008) Haematological toxicity of drugs used in psychiatry. Hum Psychopharmacol 23(Suppl 1):27–41

    Article  CAS  PubMed  Google Scholar 

  43. Chang S-C, Lu M-L (2012) Metabolic and cardiovascular adverse effects associated with treatment with antipsychotic drugs. J Exp Clin Med 4(2):103–107

    Article  CAS  Google Scholar 

  44. Citrome L, Volavka J (2005) Consensus development conference on antipsychotic drugs and obesity and diabetes: response to consensus statement. J Clin Psychiatry 66(8):1073–1074

    Article  PubMed  Google Scholar 

  45. Rummel-Kluge C et al (2010) Head-to-head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: a systematic review and meta-analysis. Schizophr Res 123(2–3):225–233

    Article  PubMed  PubMed Central  Google Scholar 

  46. Correll CU et al (2007) Does antipsychotic polypharmacy increase the risk for metabolic syndrome? Schizophr Res 89(1–3):91–100

    Article  PubMed  PubMed Central  Google Scholar 

  47. Huang MC et al (2009) Prevalence of metabolic syndrome among patients with schizophrenia or schizoaffective disorder in Taiwan. Acta Psychiatr Scand 120(4):274–280

    Article  PubMed  Google Scholar 

  48. Mizuno Y et al (2014) Pharmacological strategies to counteract antipsychotic-induced weight gain and metabolic adverse effects in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 40(6):1385–1403

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang LJ et al (2013) Adjunctive effects of aripiprazole on metabolic profiles: comparison of patients treated with olanzapine to patients treated with other atypical antipsychotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 40:260–266

    Article  CAS  PubMed  Google Scholar 

  50. Crettol S et al (2014) Pharmacogenomics in psychiatry: from therapeutic drug monitoring to genomic medicine. Clin Pharmacol Ther 95(3):254–257

    Article  CAS  PubMed  Google Scholar 

  51. Ravyn D et al (2013) CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr Res 149(1–3):1–14

    Article  PubMed  Google Scholar 

  52. Stingl JC et al (2014) Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: a quantitative systematic review. Pharmacol Ther 141(1):92–116

    Article  CAS  PubMed  Google Scholar 

  53. Ghotbi R et al (2010) Carriers of the UGT1A4 142T > G gene variant are predisposed to reduced olanzapine exposure–an impact similar to male gender or smoking in schizophrenic patients. Eur J Clin Pharmacol 66(5):465–474

    Article  CAS  PubMed  Google Scholar 

  54. Nozawa M et al (2008) The relationship between the response of clinical symptoms and plasma olanzapine concentration, based on pharmacogenetics: Juntendo University Schizophrenia Projects (JUSP). Ther Drug Monit 30(1):35–40

    Article  CAS  PubMed  Google Scholar 

  55. Erickson-Ridout KK et al (2012) Glucuronidation of the second-generation antipsychotic clozapine and its active metabolite N-desmethylclozapine. Potential importance of the UGT1A1 A(TA)(7)TAA and UGT1A4 L48V polymorphisms. Pharmacogenet Genomics 22(8):561–576

    Article  CAS  PubMed  Google Scholar 

  56. Samer CF et al (2013) Applications of CYP450 testing in the clinical setting. Mol Diagn Ther 17(3):165–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carrillo JA et al (2000) Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther Drug Monit 22(4):409–417

    Article  CAS  PubMed  Google Scholar 

  58. Shirley KL et al (2003) Correlation of cytochrome P450 (CYP) 1A2 activity using caffeine phenotyping and olanzapine disposition in healthy volunteers. Neuropsychopharmacology 28(5):961–966

    CAS  PubMed  Google Scholar 

  59. Paz E et al (2008) Evaluation of three dosing models for the prediction of steady-state trough clozapine concentrations. Clin Biochem 41(7–8):603–606

    Article  CAS  PubMed  Google Scholar 

  60. Gunes A, Dahl ML (2008) Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9(5):625–637

    Article  CAS  PubMed  Google Scholar 

  61. Relling MV et al (1992) Racial and gender differences in N-acetyltransferase, xanthine oxidase, and CYP1A2 activities. Clin Pharmacol Ther 52(6):643–658

    Article  CAS  PubMed  Google Scholar 

  62. Rasmussen BB et al (2002) The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 12(6):473–478

    Article  CAS  PubMed  Google Scholar 

  63. McGraw J, Waller D (2012) Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol 8(3):371–382

    Article  CAS  PubMed  Google Scholar 

  64. Tay JK et al (2007) Functional polymorphisms of the cytochrome P450 1A2 (CYP1A2) gene and prolonged QTc interval in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31(6):1297–1302

    Article  CAS  PubMed  Google Scholar 

  65. Romkes M et al (1991) Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 30(13):3247–3255

    Article  CAS  PubMed  Google Scholar 

  66. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45(6):525–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Flockhart DA (1995) Drug interactions and the cytochrome P450 system. The role of cytochrome P450 2C19. Clin Pharmacokinet 29(Suppl 1):45–52

    Article  CAS  PubMed  Google Scholar 

  68. Gardiner SJ, Begg EJ (2006) Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev 58(3):521–590

    Article  CAS  PubMed  Google Scholar 

  69. Desta Z et al (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41(12):913–958

    Article  CAS  PubMed  Google Scholar 

  70. Xie HG et al (2001) Molecular basis of ethnic differences in drug disposition and response. Annu Rev Pharmacol Toxicol 41:815–850

    Article  CAS  PubMed  Google Scholar 

  71. Ingelman-Sundberg M et al (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526

    Article  CAS  PubMed  Google Scholar 

  72. Cascorbi I (2003) Pharmacogenetics of cytochrome p4502D6: genetic background and clinical implication. Eur J Clin Invest 33(Suppl 2):17–22

    Article  CAS  PubMed  Google Scholar 

  73. Zhou SF (2008) Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab 9(4):310–322

    Article  CAS  PubMed  Google Scholar 

  74. Swainston Harrison T, Perry CM (2004) Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs 64(15):1715–1736

    Article  PubMed  Google Scholar 

  75. Suzuki T et al (2014) Effects of genetic polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia. Ther Drug Monit 36(5):651–655

    Article  CAS  PubMed  Google Scholar 

  76. Hendset M et al (2014) Serum concentrations of risperidone and aripiprazole in subgroups encoding CYP2D6 intermediate metabolizer phenotype. Ther Drug Monit 36(1):80–85

    CAS  PubMed  Google Scholar 

  77. Suzuki T et al (2011) Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients with schizophrenia. Ther Drug Monit 33(1):21–24

    Article  CAS  PubMed  Google Scholar 

  78. Hendset M et al (2007) Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur J Clin Pharmacol 63(12):1147–1151

    Article  CAS  PubMed  Google Scholar 

  79. Jann MW et al (1993) Pharmacokinetics and pharmacodynamics of clozapine. Clin Pharmacokinet 24(2):161–176

    Article  CAS  PubMed  Google Scholar 

  80. Linnet K, Olesen OV (1997) Metabolism of clozapine by cDNA-expressed human cytochrome P450 enzymes. Drug Metab Dispos 25(12):1379–1382

    CAS  PubMed  Google Scholar 

  81. Olesen OV, Linnet K (2001) Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol 41(8):823–832

    Article  CAS  PubMed  Google Scholar 

  82. Eap CB et al (2004) Nonresponse to clozapine and ultrarapid CYP1A2 activity: clinical data and analysis of CYP1A2 gene. J Clin Psychopharmacol 24(2):214–219

    Article  CAS  PubMed  Google Scholar 

  83. Ozdemir V et al (2001) Treatment-resistance to clozapine in association with ultrarapid CYP1A2 activity and the C→A polymorphism in intron 1 of the CYP1A2 gene: effect of grapefruit juice and low-dose fluvoxamine. J Clin Psychopharmacol 21(6):603–607

    Article  CAS  PubMed  Google Scholar 

  84. Melkersson KI et al (2007) Impact of CYP1A2 and CYP2D6 polymorphisms on drug metabolism and on insulin and lipid elevations and insulin resistance in clozapine-treated patients. J Clin Psychiatry 68(5):697–704

    Article  CAS  PubMed  Google Scholar 

  85. Chiu YY et al (2014) Lurasidone drug-drug interaction studies: a comprehensive review. Drug Metabol Drug Interact 29(3):191–202

    Article  CAS  PubMed  Google Scholar 

  86. Callaghan JT et al (1999) Olanzapine. Pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet 37(3):177–193

    Article  CAS  PubMed  Google Scholar 

  87. Thomas P et al (2008) Correlates of response to Olanzapine in a North Indian Schizophrenia sample. Psychiatry Res 161(3):275–283

    Article  CAS  PubMed  Google Scholar 

  88. Czerwensky F et al (2014) The CYP1A2*1D and *1F polymorphisms have a significant impact on olanzapine serum concentrations. Ther Drug Monit 37(2):152–160

    Article  CAS  Google Scholar 

  89. Laika B et al (2010) Pharmacogenetics and olanzapine treatment: CYP1A2*1F and serotonergic polymorphisms influence therapeutic outcome. Pharmacogenomics J 10(1):20–29

    Article  CAS  PubMed  Google Scholar 

  90. Bigos KL et al (2011) Genetic variation in CYP3A43 explains racial difference in olanzapine clearance. Mol Psychiatry 16(6):620–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Citrome L (2012) Oral paliperidone extended-release: chemistry, pharmacodynamics, pharmacokinetics and metabolism, clinical efficacy, safety and tolerability. Expert Opin Drug Metab Toxicol 8(7):873–888

    Article  CAS  PubMed  Google Scholar 

  92. Grimm SW et al (2006) Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics. Br J Clin Pharmacol 61(1):58–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. DeVane CL, Nemeroff CB (2001) Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet 40(7):509–522

    Article  CAS  PubMed  Google Scholar 

  94. van der Weide K, van der Weide J (2014) The influence of the CYP3A4*22 polymorphism on serum concentration of quetiapine in psychiatric patients. J Clin Psychopharmacol 34(2):256–260

    Article  PubMed  CAS  Google Scholar 

  95. Mannens G et al (1993) Absorption, metabolism, and excretion of risperidone in humans. Drug Metab Dispos 21(6):1134–1141

    CAS  PubMed  Google Scholar 

  96. Scordo MG et al (1999) Cytochrome P450 2D6 genotype and steady state plasma levels of risperidone and 9-hydroxyrisperidone. Psychopharmacology (Berl) 147(3):300–305

    Article  CAS  Google Scholar 

  97. Yasui-Furukori N et al (2003) Effects of CYP2D6 genotypes on plasma concentrations of risperidone and enantiomers of 9-hydroxyrisperidone in Japanese patients with schizophrenia. J Clin Pharmacol 43(2):122–127

    Article  CAS  PubMed  Google Scholar 

  98. Beedham C et al (2003) Ziprasidone metabolism, aldehyde oxidase, and clinical implications. J Clin Psychopharmacol 23(3):229–232

    CAS  PubMed  Google Scholar 

  99. Lucas RA et al (1998) A pharmacokinetic interaction between carbamazepine and olanzapine: observations on possible mechanism. Eur J Clin Pharmacol 54(8):639–643

    Article  CAS  PubMed  Google Scholar 

  100. Gex-Fabry M et al (2003) Therapeutic drug monitoring of olanzapine: the combined effect of age, gender, smoking, and comedication. Ther Drug Monit 25(1):46–53

    Article  CAS  PubMed  Google Scholar 

  101. Ereshefsky L et al (1995) Antidepressant drug interactions and the cytochrome P450 system. The role of cytochrome P450 2D6. Clin Pharmacokinet 29(Suppl 1):10–18; discussion 18–9

    Article  CAS  PubMed  Google Scholar 

  102. Nemeroff CB et al (2002) Quetiapine: preclinical studies, pharmacokinetics, drug interactions, and dosing. J Clin Psychiatry 63(Suppl 13):5–11

    CAS  PubMed  Google Scholar 

  103. Miceli JJ et al (2000) The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers. Br J Clin Pharmacol 49(Suppl 1):65S–70S

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Miceli JJ et al (2000) The effects of ketoconazole on ziprasidone pharmacokinetics–a placebo-controlled crossover study in healthy volunteers. Br J Clin Pharmacol 49(Suppl 1):71S–76S

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Everson G et al (2000) The pharmacokinetics of ziprasidone in subjects with normal and impaired hepatic function. Br J Clin Pharmacol 49(Suppl 1):21S–26S

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Patteet L et al (2012) Therapeutic drug monitoring of common antipsychotics. Ther Drug Monit 34(6):629–651

    Article  CAS  PubMed  Google Scholar 

  107. Hiemke C et al (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44(6):195–235

    Article  Google Scholar 

  108. Grunder G et al (2011) Therapeutic plasma concentrations of antidepressants and antipsychotics: lessons from PET imaging. Pharmacopsychiatry 44(6):236–248

    Article  CAS  PubMed  Google Scholar 

  109. Hiemke C (2008) Therapeutic drug monitoring in neuropsychopharmacology: does it hold its promises? Eur Arch Psychiatry Clin Neurosci 258(Suppl 1):21–27

    Article  PubMed  Google Scholar 

  110. Yang J et al (2012) Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes. Br J Clin Pharmacol 73(2):268–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Trifiro G, Spina E (2011) Age-related changes in pharmacodynamics: focus on drugs acting on central nervous and cardiovascular systems. Curr Drug Metab 12(7):611–620

    Article  CAS  PubMed  Google Scholar 

  112. Alexopoulos GS et al (2004) Using antipsychotic agents in older patients. J Clin Psychiatry 65(Suppl 2):5–99; discussion 100–102; quiz 103–4

    PubMed  Google Scholar 

  113. Gareri P et al (2014) Use and safety of antipsychotics in behavioral disorders in elderly people with dementia. J Clin Psychopharmacol 34(1):109–123

    Article  CAS  PubMed  Google Scholar 

  114. Shin JY et al (2013) Risk of ischemic stroke with the use of risperidone, quetiapine and olanzapine in elderly patients: a population-based, case-crossover study. J Psychopharmacol 27(7):638–644

    Article  PubMed  CAS  Google Scholar 

  115. Ray WA et al (2009) Atypical antipsychotic drugs and the risk of sudden cardiac death. N Engl J Med 360(3):225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Findling RL et al (2005) Use of antipsychotics in children and adolescents. J Clin Psychiatry 66(Suppl 7):29–40

    CAS  PubMed  Google Scholar 

  117. Almandil NB, Wong IC (2011) Review on the current use of antipsychotic drugs in children and adolescents. Arch Dis Child Educ Pract Ed 96(5):192–196

    Article  PubMed  Google Scholar 

  118. Vitiello B et al (2009) Antipsychotics in children and adolescents: increasing use, evidence for efficacy and safety concerns. Eur Neuropsychopharmacol 19(9):629–635

    Article  CAS  PubMed  Google Scholar 

  119. Deligiannidis KM et al (2014) Pharmacotherapy for mood disorders in pregnancy: a review of pharmacokinetic changes and clinical recommendations for therapeutic drug monitoring. J Clin Psychopharmacol 34(2):244–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McCormack SA, Best BM (2014) Obstetric pharmacokinetic dosing studies are urgently needed. Front Pediatr 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  121. Anderson GD (2006) Using pharmacokinetics to predict the effects of pregnancy and maternal-infant transfer of drugs during lactation. Expert Opin Drug Metab Toxicol 2(6):947–960

    Article  CAS  PubMed  Google Scholar 

  122. Nulman I (2014) The effects of the new antipsychotic medications on mothers and babies. J Popul Ther Clin Pharmacol 21(3):e542–e547

    PubMed  Google Scholar 

  123. Gentile S (2010) Antipsychotic therapy during early and late pregnancy. A systematic review. Schizophr Bull 36(3):518–544

    Article  PubMed  PubMed Central  Google Scholar 

  124. Habermann F et al (2013) Atypical antipsychotic drugs and pregnancy outcome: a prospective, cohort study. J Clin Psychopharmacol 33(4):453–462

    Article  CAS  PubMed  Google Scholar 

  125. Galbally M et al (2014) Antipsychotic drugs in pregnancy: a review of their maternal and fetal effects. Ther Adv Drug Saf 5(2):100–109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Llewellyn A, Stowe ZN (1998) Psychotropic medications in lactation. J Clin Psychiatry 59(Suppl 2):41–52

    PubMed  Google Scholar 

  127. Gardiner SJ et al (2003) Transfer of olanzapine into breast milk, calculation of infant drug dose, and effect on breast-fed infants. Am J Psychiatry 160(8):1428–1431

    Article  PubMed  Google Scholar 

  128. Lee A et al (2004) Excretion of quetiapine in breast milk. Am J Psychiatry 161(9):1715–1716

    Article  PubMed  Google Scholar 

  129. Ilett KF et al (2004) Transfer of risperidone and 9-hydroxyrisperidone into human milk. Ann Pharmacother 38(2):273–276

    Article  PubMed  Google Scholar 

  130. Menon SJ (2008) Psychotropic medication during pregnancy and lactation. Arch Gynecol Obstet 277(1):1–13

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mong-Liang Lu MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lu, ML., Lane, HY. (2016). Clinically Significant Interactions with Antipsychotics. In: Jann, M., Penzak, S., Cohen, L. (eds) Applied Clinical Pharmacokinetics and Pharmacodynamics of Psychopharmacological Agents. Adis, Cham. https://doi.org/10.1007/978-3-319-27883-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27883-4_16

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-27881-0

  • Online ISBN: 978-3-319-27883-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics