We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Model Sets and New Versions of Shannon Sampling Theorem | SpringerLink
Skip to main content

Model Sets and New Versions of Shannon Sampling Theorem

  • Chapter
  • First Online:

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In these notes distinct approaches to define model sets/quasicrystals are discussed. We also discuss some improvements on Shannon sampling theorem obtained by using simple model sets/quasicrystals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. F. Bass and K. Gröchenig, Random Sampling of Entire Functions of Exponential Type in Several Variables To appear in Israel J. Math.

    Google Scholar 

  2. A. Beurling, Collected Works of Arne Beurling (2 vol.), edited by L. Carleson et al., Birkhauser, (1989).

    Google Scholar 

  3. G. Chistyakov and Y. Lyubarskii, Random perturbations of exponential Riesz bases in L 2 (−π,π). (1997) Ann. Inst. Fourier (Grenoble).

    MATH  Google Scholar 

  4. R. Coifman and G. Weiss, Transference methods in Analysis CBMS Reg. Conf. Seried in Math. Vol 31, AMS (1977).

    Google Scholar 

  5. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952) 341–366.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Hof, On diffraction by aperiodic structures. Comm. Math. Phys. 169 (1995) 25–43.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Zeitschrift. (1936) 367–379.

    Google Scholar 

  8. J-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Annales scientifiques de l’ENS (1962) 93–150.

    Google Scholar 

  9. G. Kozma and N. Lev Exponential Riesz bases, discrepancy of irrational rotations and BMO. Journal of Fourier Analysis and Applications 17 (2011), 879–898.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Kozma and S. Nitzan Combining Riesz bases. Inventiones mathematicae, (2015), Volume 199, Issue 1, pp 267–285

    Google Scholar 

  11. J. C. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets. Comm. Math. Phys. 179 (1996) 365–376.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. C. Lagarias, Mathematical Quasicrystals and the Problem of Diffraction. Directions in Mathematical Quasicrystals. CRM Monograph Series 13, American Mathematical Society, (2000) 61–93.

    Google Scholar 

  13. J. C. Lagarias, Geometric Models for Quasicrystals I. Delone Sets of Finite Type. Discrete & Computational Geometry 21 (1999) 161–191.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. C. Lagarias, Geometric Models for Quasicrystals II. Local Rules Under Isometries. Discrete & Computational Geometry 21 (1999) 345–372.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. C. Lagarias, P. A. B. Pleasants, Repetitive Delone Sets and Quasicrystals. Ergod. Th. Dyn. Sys. 23 (2003) 831–867.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117 (1967) 37–52.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Lev Riesz bases of exponentials on multiband spectra. Proceedings of the American Mathematical Society 140 (2012), 3127–3132.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Lev and A. Olevskii, Quasicrystals and Poisson’s summation formula. Inventiones mathematicae, to appear.

    Google Scholar 

  19. Z. Masáková, J. Patera, E. Pelantová, Lattice-like properties of quasicrystal models with quafratic irrationalities. CRM, November 1999.

    MATH  Google Scholar 

  20. B. Matei, Parcimonie et différents problèmes en traitement d’images. Habilitation à diriger des recherches, Universitè Paris-Nord, (2011).

    Google Scholar 

  21. B. Matei and Y. Meyer, Quasicrystals are sets of stable sampling. Complex Variables and Elliptic Equations 55 (2010) 947–964.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Matei and Y. Meyer, Quasicrystals are sets of stable sampling. C. R. Acad. Sci. Paris, Ser. I 346 (2008), 1235–1238.

    Google Scholar 

  23. B. Matei and Y. Meyer, A variant of compressed sensing. Rev. Mat. Iberoamericana, Volume 25, Number 2 (2009), 669–692.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Meyer, Le spectre de Wiener. Studia Mathematica 27 (1966) 189–201.

    MathSciNet  MATH  Google Scholar 

  25. Y. Meyer, Trois problèmes sur les sommes trigonométriques, Astérisque 1 (1973), SMF.

    Google Scholar 

  26. Y. Meyer, Nombres de Pisot, nombres de Salem et analyse harmonique. Lecture Notes in Math., 117 (1970) Springer-Verlag.

    Google Scholar 

  27. Y. Meyer, Algebraic numbers and harmonic analysis. (1972), North-Holland.

    Google Scholar 

  28. Y. Meyer, Quasicrystals, Diophantine Approximation and Algebraic Numbers., Beyond Quasicrystals. F. Axel, D. Gratias (eds.) Les Editions de Physique, Springer (1995) 3–16.

    Google Scholar 

  29. Y. Meyer, Quasicrystals, Almost Periodic Patterns, Mean-periodic Functions and Irregular Sampling., Afr. Diaspora J. Math. (N.S.) Volume 13, Number 1 (2012), 1–45.

    Google Scholar 

  30. R. V. Moody, Uniform Distribution in Model Sets. Can. Math. Bull., 45 (No. 1) (2002) 123–130.

    Google Scholar 

  31. R. V. Moody, Model sets: A Survey. From Quasicrystals to More Complex Systems, eds. F. Axel, F. Dénoyer, J-P. Gazeau, Centre de physique Les Houches, Springer Verlag, 2000.

    Google Scholar 

  32. R. V. Moody, Meyer Sets and Their Duals. The Mathematics of Aperiodic Order, Proceedings of the NATO-Advanced Study Institute on Long-range Aperiodic Order, ed. R.V. Moody, NATO ASI Series C489, Kluwer Acad. Press, 1997, 403–441.

    Google Scholar 

  33. R. V. Moody, Uniform Distribution in Model Sets. Can. Math. Bull., 45 (No. 1) (2002) 123–130.

    Google Scholar 

  34. R. V. Moody, Mathematical quasicrystals: a tale of two topologies. ICMP (2003). Edited by Jean-Claude Zambrini (University of Lisbon, Portugal), Published by World Scientific Publishing Co. Pte. Ltd., 2006.

    Google Scholar 

  35. A. Olevskii and A. Ulanovskii, A universal sampling of band-limited signals, C.R. Math. Acad. Sci. Paris 342 (2006) 927–931.

    Google Scholar 

  36. A. Olevskii and A. Ulanovskii, Universal sampling and interpolation of band-limited signals, Geometric and Functional Analysis, 18 (2008) 1029–1052.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Salem, Algebraic numbers and Fourier analysis. Boston, Heath, (1963).

    MATH  Google Scholar 

  38. L. Schwartz, Théorie des distributions. Hermann, Paris (1966).

    MATH  Google Scholar 

  39. M. Senechal, Quasicrystals and Geometry. Cambridge University Press, 1995; paperback edition 1996.

    Google Scholar 

  40. M. Senechal, What is a quasicrystal? Notices of the AMS, 886–887, September 2006.

    Google Scholar 

  41. D. Shechtman, I. Blech, D. Gratias and J.W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Lett. 53 (1984) 1951–1953.

    Article  Google Scholar 

  42. N. Wiener, The Fourier Integral and certain of its applications. Cambridge University Press (1933).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basarab Matei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matei, B. (2016). Model Sets and New Versions of Shannon Sampling Theorem. In: Aldroubi, A., Cabrelli, C., Jaffard, S., Molter, U. (eds) New Trends in Applied Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-27873-5_7

Download citation

Publish with us

Policies and ethics