Skip to main content

Microwave Tomography

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

This chapter details microwave tomography for breast cancer detection. It includes a description of the scattering mechanism and introduces the object function and the forward problem, which defines the non-linear inverse tomographic problem. This is followed by a brief overview of the linear approximations which historically have been applied for solving the inverse problem. The major part of this chapter is devoted to introducing the algorithms which have been proposed for solving the non-linear tomographic problem. This includes local gradient-based methods and global evolutionary methods as well as a description of the use of multi-frequency data and a priori knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In [51], the authors deal with 2-D tomography. The expression presented here has been re-written to fit a 3-D algorithm.

  2. 2.

    In [52], the authors deal with 2-D tomography. The expression presented here has been re-written to fit a 3-D algorithm.

References

  1. Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerised tomography. Phys Med Biol 21(5):733, DOI 10.1088/0031-9155/21/5/002

    Article  Google Scholar 

  2. Anastasio MA, Shi D, Huang Y, Gbur G (2005) Image reconstruction in spherical-wave intensity diffraction tomography. J Opt Soc Am A 22(12):2651–2661, DOI 10.1364/JOSAA.22.002651

    Google Scholar 

  3. Atkinson KE (1976) A survey of numerical methods for the solution of Fredholm integral equations of the second kind. Society for Industrial and Applied Mathematics

    MATH  Google Scholar 

  4. Beaney RP (1984) Positron emission tomography in the study of human tumors. Seminars in Nuclear Medicine 14(4):324–341, DOI 10.1016/S0001-2998(84)80006-9

    Article  Google Scholar 

  5. Bolomey J, Izadnegahdar A, Jofre L, Pichot C, Peronnet G, Solaimani M (1982) Microwave Diffraction Tomography for Biomedical Applications. IEEE Transactions on Microwave Theory and Techniques 30(11):1998 –2000, DOI 10.1109/TMTT.1982.1131357

    Google Scholar 

  6. Born M (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press, Cambridge, New York

    Book  Google Scholar 

  7. Brignone M, Bozza G, Randazzo A, Piana M, Pastorino M (2008) A Hybrid Approach to 3d Microwave Imaging by Using Linear Sampling and ACO. IEEE Transactions on Antennas and Propagation 56(10):3224–3232, DOI 10.1109/TAP.2008.929504

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brooks RA, Chiro GD (1975) Theory of Image Reconstruction in Computed Tomography. Radiology 117(3):561–572, DOI 10.1148/117.3.561

    Article  Google Scholar 

  9. Caorsi S, Gragnani GL, Pastorino M, Zunino G (1991) Microwave imaging method using a simulated annealing approach. Microwave and Guided Wave Letters, IEEE 1(11):331–333

    Article  Google Scholar 

  10. Chew W (1995) Waves and fields in inhomogeneous media. IEEE Press, New York

    Google Scholar 

  11. Collin RE, Zucker FJ (1969) Antenna theory. McGraw-Hill

    Google Scholar 

  12. Crocco L, Isernia T (2001) Inverse scattering with real data: detecting and imaging homogeneous dielectric objects. Inverse Problems 17(6):1573, DOI 10.1088/0266-5611/17/6/302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dahlback R, Rubaek T, Persson M, Stake J (2012) A System for THz Imaging of Low-Contrast Targets Using the Born Approximation. IEEE Transactions on Terahertz Science and Technology 2(3):361–370, DOI 10.1109/TTHZ.2012.2189900

    Article  ADS  Google Scholar 

  14. Dembo RS, Eisenstat SC, Steihaug T (1982) Inexact Newton Methods. SIAM Journal on Numerical Analysis 19(2):400–408, DOI 10.2307/2156954

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Donelli M, Franceschini D, Rocca P, Massa A (2009) Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization. IEEE Trans Geosci Remote Sensing 47(5):1467–1481, DOI 10.1109/TGRS.2008.2005529

    Article  ADS  Google Scholar 

  16. Donelli M, Craddock I, Gibbins D, Sarafianou M (2011) A Three-Dimensional Time Domain Microwave Imaging Method for Breast Cancer Detection Based on an Evolutionary Algorithm. Progress In Electromagnetics Research 18:179–195

    Article  Google Scholar 

  17. Dorn O, Lesselier D (2009) Level set methods for inverse scattering—some recent developments. Inverse Problems 25(12):125,001, DOI 10.1088/0266-5611/25/12/125001

    Article  MathSciNet  MATH  Google Scholar 

  18. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth International Symposium on, pp 39–43, DOI 10.1109/MHS.1995.494215

  19. Eisenstat SC, Walker HF (1994) Globally Convergent Inexact Newton Methods. SIAM Journal on Optimization 4(2):393–422, DOI 10.1137/0804022

    Article  MathSciNet  MATH  Google Scholar 

  20. Eisenstat SC, Walker HF (1996) Choosing the Forcing Terms in an Inexact Newton Method. SIAM Journal on Scientific Computing 17(1):16–32, DOI 10.1137/0917003

    Article  MathSciNet  MATH  Google Scholar 

  21. Epstein NR, Golnabi AG, Meaney PM, Paulsen KD (2012) Conformal microwave tomography using a broadband non-contacting monopole antenna array. In: 2012 IEEE International Conference on Ultra-Wideband (ICUWB), pp 192–196, DOI 10.1109/ICUWB. 2012.6340462

    Google Scholar 

  22. Epstein NR, Meaney PM, Paulsen KD (2013) MR-guided conformal microwave imaging for enhanced inclusion detection within irregularly shaped volumes. In: Proc. SPIE 8672, Medical Imaging 2013, p 86720H, DOI 10.1117/12.2007939

  23. Fang Q, Meaney P, Paulsen K (2004) Microwave image reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information. Microwave Theory and Techniques, IEEE Transactions on 52(8):1866–1875, DOI 10.1109/TMTT.2004.832014

    Article  ADS  Google Scholar 

  24. Fhager A, Hashemzadeh P, Persson M (2006) Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm. IEEE Trans Biomed Eng 53(8):1594–1604, DOI 10.1109/TBME.2006.878079

    Article  Google Scholar 

  25. Fhager A, Gustafsson M, Nordebo S (2012) Image reconstruction in microwave tomography using a dielectric Debye model. Biomedical Engineering, IEEE Transactions on 59(1):156–166

    Article  Google Scholar 

  26. Garnero L, Franchois A, Hugonin JP, Pichot C, Joachimowicz N (1991) Microwave imaging-complex permittivity reconstruction-by simulated annealing. Microwave Theory and Techniques, IEEE Transactions on 39(11):1801–1807

    Article  ADS  Google Scholar 

  27. Gerberich CL, Panel ORNLM, Commission UAE (1957) On the solution of a Fredholm integral equation. University of Tennessee.

    Google Scholar 

  28. Golnabi AH, Meaney PM, Paulsen KD (2013) Tomographic Microwave Imaging With Incorporated Prior Spatial Information. IEEE Transactions on Microwave Theory and Techniques DOI 10.1109/TMTT.2013.2247413

    Google Scholar 

  29. Gordon R, Bender R, Herman GT (1970) Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of Theoretical Biology 29(3):471–481, DOI 10.1016/0022-5193(70)90109-8

    Article  Google Scholar 

  30. Guardiola M, Jofre L, Capdevila S, Blanch S, Romeu J (2011) 3d uwb magnitude-combined tomographic imaging for biomedical applications. algorithm validation. Radioengineering 20(2):366–372

    Google Scholar 

  31. Guardiola M, Capdevila S, Romeu J, Jofre L (2012) 3-d microwave magnitude combined tomography for breast cancer detection using realistic breast models. Antennas and Wireless Propagation Letters, IEEE 11:1622–1625

    Article  Google Scholar 

  32. Gustafsson M, He S (2000) An optimization approach to two-dimensional time domain electromagnetic inverse problems. Radio Sci 35(2):525–536, DOI 200010.1029/1999RS900091

    Google Scholar 

  33. Hajihashemi M, El-Shenawee M (2008) Shape Reconstruction Using the Level Set Method for Microwave Applications. IEEE Antennas and Wireless Propagation Letters 7:92–96, DOI 10.1109/LAWP.2008.920464

    Article  ADS  Google Scholar 

  34. Hansen PC (1997) Rank-deficient and discrete ill-posed problems: Numerical aspects of linear inversion. SIAM monographs on mathematical modeling and computation, SIAM, Philadelphia

    Google Scholar 

  35. Hansen T, Johansen PM (2000) Inversion scheme for ground penetrating radar that takes into account the planar air-soil interface. Geoscience and Remote Sensing, IEEE Transactions on 38(1):496–506, DOI 10.1109/36.823944

    Article  ADS  Google Scholar 

  36. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. National Bureau of Standards, Journal of Research 49:409–436

    Article  MathSciNet  MATH  Google Scholar 

  37. Holland JH (1984) Genetic Algorithms and Adaptation. In: Selfridge OG, Rissland EL, Arbib MA (eds) Adaptive Control of Ill-Defined Systems, Springer US, Boston, MA, pp 317–333

    Chapter  Google Scholar 

  38. Holland JH, Reitman JS (1977) Cognitive systems based on adaptive algorithms. SIGART Bull 63:49–49, DOI 10.1145/1045343.1045373

    Article  Google Scholar 

  39. Huang T, Mohan A (2007) A Microparticle Swarm Optimizer for the Reconstruction of Microwave Images. IEEE Transactions on Antennas and Propagation 55(3):568–576, DOI 10.1109/TAP.2007.891545

    Article  ADS  Google Scholar 

  40. Irishina N, Dorn O, Moscoso M (2008) A level set evolution strategy in microwave imaging for early breast cancer detection. Computers & Mathematics with Applications 56(3):607–618, DOI 10.1016/j.camwa.2008.01.004

    Article  MathSciNet  MATH  Google Scholar 

  41. Irishina N, Alvarez D, Dorn O, Moscoso M (2010) Structural level set inversion for microwave breast screening. Inverse Problems 26(3):035,015, DOI 10.1088/0266-5611/ 26/3/035015

    Google Scholar 

  42. Joisel A, Bolomey JC (2000) Rapid microwave imaging of living tissues. In: Medical Imaging 2000, International Society for Optics and Photonics, pp 320–330

    Google Scholar 

  43. Kak A (1979) Computerized tomography with X-ray, emission, and ultrasound sources. Proceedings of the IEEE 67(9):1245–1272, DOI 10.1109/PROC.1979.11440

    Article  Google Scholar 

  44. Keller JB (1969) Accuracy and Validity of the Born and Rytov Approximations. J Opt Soc Am 59(8):1003, DOI 10.1364/JOSA.59.001003

    Article  Google Scholar 

  45. Kennedy J, Eberhart RC, et al (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948

    Google Scholar 

  46. Landweber L (1951) An Iteration Formula for Fredholm Integral Equations of the First Kind. American Journal of Mathematics 73(3):615–624, DOI 10.2307/2372313

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math (USA) 2:164–168

    MathSciNet  MATH  Google Scholar 

  48. Marquardt DW (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics 11(2):431–441

    Article  MathSciNet  MATH  Google Scholar 

  49. Meaney PM, Demidenko E, Yagnamurthy NK, Li D, Fanning MW, Paulsen KD (2001a) A two-stage microwave image reconstruction procedure for improved internal feature extraction. Med Phys 28(11):2358–2369

    Google Scholar 

  50. Meaney PM, Paulsen KD, Pogue BW, Miga MI (2001b) Microwave image reconstruction utilizing log-magnitude and unwrapped phase to improve high-contrast object recovery. Medical Imaging, IEEE Transactions on 20(2):104–116, DOI 10.1109/42.913177

    Google Scholar 

  51. Mojabi P, LoVetri J (2009) Microwave Biomedical Imaging Using the Multiplicative Regularized Gauss–Newton Inversion. Antennas and Wireless Propagation Letters, IEEE 8:645–648, DOI 10.1109/LAWP.2009.2023602

    Google Scholar 

  52. Mojabi P, LoVetri J, Shafai L (2011) A Multiplicative Regularized Gauss-Newton Inversion for Shape and Location Reconstruction. IEEE Transactions on Antennas and Propagation 59(12):4790–4802, DOI 10.1109/TAP.2011.2165487

    Article  ADS  MathSciNet  Google Scholar 

  53. Natterer F, Wubbeling F (1995) A propagation-backpropagation method for ultrasound tomography. Inverse Problems 11(6):1225, DOI 10.1088/0266-5611/11/6/007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ortega JM (2000) Iterative solution of nonlinear equations in several variables. No. 30 in Classics in applied mathematics, Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  55. Paige CC, Saunders MA (1982) LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans Math Softw 8(1):43–71, DOI 10.1145/355984.355989

    Article  MathSciNet  MATH  Google Scholar 

  56. Pallone MJ, Meaney PM, Paulsen KD (2012) Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams. Medical physics 39(6):3102–3111

    Article  ADS  Google Scholar 

  57. Peronnet G, Pichot C, Bolomey JC, Jofre L, Izadnegahdar A, Szeles C, Michel Y, Guerquin-Kern JL, Gautherie M (1983) A Microwave Diffraction Tomography System for Biomedical Applications. In: Microwave Conference, 1983. 13th European, pp 529–533, DOI 10.1109/EUMA.1983.333285

  58. Phillips DL (1962) A Technique for the Numerical Solution of Certain Integral Equations of the First Kind. J ACM 9(1):84–97, DOI 10.1145/321105.321114

    Article  MathSciNet  MATH  Google Scholar 

  59. Pichot C, Jofre L, Peronnet G, Bolomey J (1985) Active microwave imaging of inhomogeneous bodies. Antennas and Propagation, IEEE Transactions on 33(4):416–425

    Article  ADS  Google Scholar 

  60. Pozar DM (1997) Microwave engineering, 2nd edn. Wiley, New York

    Google Scholar 

  61. Raichle ME (1980) Positron-Emission Tomography. In: Weiss L, Gilbert HA, Posner JB (eds) Brain Metastasis, Springer Netherlands, Dordrecht, pp 246–253

    Chapter  Google Scholar 

  62. Rubaek T, Meincke P (2006) Including antenna models in microwave imaging for breast cancer screening. In: Antennas and Propagation, 2006. EuCAP 2006. First European Conference on, pp 1–6

    Google Scholar 

  63. Rubaek T, Meaney P, Meincke P, Paulsen K (2007) Nonlinear Microwave Imaging for Breast-Cancer Screening Using Gauss–Newton’s Method and the CGLS Inversion Algorithm. Antennas and Propagation, IEEE Transactions on 55(8):2320–2331, DOI 10.1109/TAP.2007.901993

    Article  ADS  Google Scholar 

  64. Sabouni A, Noghanian S, Pistorius S (2010) A global optimization technique for microwave imaging of the inhomogeneous and dispersive breast. Electrical and Computer Engineering, Canadian Journal of 35(1):15–24

    Article  Google Scholar 

  65. Scapaticci R, Catapano I, Crocco L (2012) Wavelet-Based Adaptive Multiresolution Inversion for Quantitative Microwave Imaging of Breast Tissues. IEEE Transactions on Antennas and Propagation 60(8):3717–3726, DOI 10.1109/TAP.2012.2201083

    Article  ADS  MathSciNet  Google Scholar 

  66. Schaffer JD (1985) Some experiments in machine learning using vector evaluated genetic algorithms. Tech. rep., Vanderbilt Univ., Nashville, TN (USA)

    Google Scholar 

  67. Semnani A, Kamyab M (2007) An Enhanced Method for Inverse Scattering Problems using Fourier Series Expansion in Conjunction with FDTD and PSO. Progress In Electromagnetics Research 76:45–64, DOI 10.2528/PIER07061204

    Article  Google Scholar 

  68. Semnani A, Kamyab M (2008) Truncated Cosine Fourier Series Expansion Method for Solving 2-D Inverse Scattering Problems. Progress In Electromagnetics Research 81:73–97, DOI 10.2528/PIER07122404

    Article  Google Scholar 

  69. Shea JD, Kosmas P, Hagness SC, Van Veen BD (2010) Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique. Medical Physics 37(8):4210, DOI 10.1118/1.3443569

    Google Scholar 

  70. Slaney M, Kak A, Larsen L (1984) Limitations of Imaging with First-Order Diffraction Tomography. Microwave Theory and Techniques, IEEE Transactions on 32(8):860–874

    Article  ADS  Google Scholar 

  71. Stotzka R, Wuerfel J, Mueller TO, Gemmeke H (2002) Medical imaging by ultrasound computer tomography. In: Proc. of Medical Imaging 2002: Ultrasonic Imaging and Signal Processing, pp 110–119, DOI 10.1117/12.462144

  72. Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H (1999) Clinical Potential of Intravascular Ultrasound for Physiological Assessment of Coronary Stenosis Relationship Between Quantitative Ultrasound Tomography and Pressure-Derived Fractional Flow Reserve. Circulation 100(3):250–255, DOI 10.1161/01.CIR.100.3.250

    Article  Google Scholar 

  73. Tikhonov AN (1963) Solution of incorrectly formulated problems and regularization method. Doklady Akademii Nauk SSSR 151(3):501–504

    MathSciNet  MATH  Google Scholar 

  74. Winters DW, Shea JD, Kosmas P, Van Veen BD, Hagness SC (2009) Three-Dimensional Microwave Breast Imaging: Dispersive Dielectric Properties Estimation Using Patient-Specific Basis Functions. IEEE Trans Med Imaging 28(7):969–981, DOI 10.1109/TMI.2008.2008959

    Google Scholar 

  75. Zhou H, Takenaka T, Johnson JE, Tanaka T (2009) A breast imaging model using microwaves and a time domain three dimensional reconstruction method. Progress In Electromagnetics Research 93:57–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Jacob Mohr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubæk, T., Mohr, J.J. (2016). Microwave Tomography. In: Conceição, R., Mohr, J., O'Halloran, M. (eds) An Introduction to Microwave Imaging for Breast Cancer Detection. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-27866-7_3

Download citation

Publish with us

Policies and ethics