A Real-Time Depth Estimation Approach for a Focused Plenoptic Camera

  • Ross VaskoEmail author
  • Niclas Zeller
  • Franz Quint
  • Uwe Stilla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)


This paper presents an algorithm for real-time depth estimation with a focused plenoptic camera. The described algorithm is based on pixel-wise stereo-observations in the raw image recorded by the plenoptic camera which are combined in a probabilistic depth map. Additionally, we provide efficient methods for outlier removal based on a Naive Bayes classifier as well as depth refinement using a bilateral filter. We achieve a real-time performance for our algorithm by an optimized parallel implementation.


Depth Estimation Texture Region Bilateral Filter Epipolar Line Visual Odometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ives, F.E.: Parallax stereogram and process of making same. US Patent 725,567. Google Patents (1903).
  2. 2.
    Lippmann, G.: Epreuves reversibles. photographies integrales. Comptes Rendus De l’Academie Des Sciences De Paris, vol. 146, pp. 446–451 (1908)Google Scholar
  3. 3.
    Adelson, E.H., Wang, J.Y.A.: Single lens stereo with a plenoptic camera. IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992)CrossRefGoogle Scholar
  4. 4.
    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 43–54. ACM, New York, NY, USA (1996)Google Scholar
  5. 5.
    Zeller, N., Quint, F., Stilla, U.: Establishing a probabilistic depth map from focused plenoptic cameras. In: Proceedings of International Conference on 3D Vision (3DV), pp. 91–99 (2015)Google Scholar
  6. 6.
    Wanner, S., Goldluecke, B.: Globally consistent depth labeling of 4D lightfields. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)Google Scholar
  7. 7.
    Wanner, S., Goldluecke, B.: Variation light field analysis fo disparity estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36, 606–619 (2014)CrossRefGoogle Scholar
  8. 8.
    Bishop, T.E., Favaro, P.: Full-resolution depth map estimation from an aliased plenoptic light field. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 186–200. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Perwaß, C., Wietzke, L.: Single lens 3D-camera with extended depth-of-field. In: Proceedings of SPIE 8291, Human Vision and Electronic Imaging XVII, Burlingame, California, USA (2012)Google Scholar
  10. 10.
    Lumsdaine, A., Georgiev, T.: Full resolution lightfield rendering. Technical report, Adobe Systems, Inc. (2008)Google Scholar
  11. 11.
    Lumsdaine, A., Georgiev, T.: The focused plenoptic camera. In: Proceedings of IEEE International Conference on Computational Photography (ICCP), San Francisco, CA, pp. 1–8 (2009)Google Scholar
  12. 12.
    Zeller, N., Quint, F., Stilla, U.: Calibration and accuracy analysis of a focused plenoptic camera. ISPRS Ann. Photogrammetry Remote Sens. Spatial Inf. Sci. II–3, 207–212 (2014)Google Scholar
  13. 13.
    Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral Filtering: Theory and Applications. Now Publishers Inc, Hanover (2009) Google Scholar
  14. 14.
    Crow, F.C.: Summed-area tables for texture mapping. ACM SIGGRAPH Comput. Graph. 18, 207–212 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ross Vasko
    • 1
    Email author
  • Niclas Zeller
    • 2
    • 3
  • Franz Quint
    • 2
  • Uwe Stilla
    • 3
  1. 1.The Ohio State University ColumbusUSA
  2. 2.Karlsruhe University of Applied SciencesKarlsruheGermany
  3. 3.Technische Universität MünchenMunichGermany

Personalised recommendations