A Computer Vision System for Automatic Classification of Most Consumed Brazilian Beans

  • S. A. AraújoEmail author
  • W. A. L. Alves
  • P. A. Belan
  • K. P. Anselmo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)


In this work we propose a computer vision system (CVS) for automatic classification of beans. It is able to classify the beans most consumed in Brazil, according to their skin colors and is composed by three main steps: (i) image acquisition and pre-processing, (ii) segmentation of grains and (iii) classification of grains. In the conducted experiments, we used an apparatus controlled by a PC that includes a conveyor belt, an image acquisition chamber and a camera, to simulate an industrial line of production. The results obtained in the experiments indicate that proposed system could be used to support the visual quality inspection of Brazilian beans.


Beans Granulometry Computer vision system 



The authors would like to thank UNINOVE and FAPESP São Paulo Research Foundation (Process 2014/09194-5) by financial support.


  1. 1.
    BMALS - Brazilian Ministry of Agriculture, Livestock and Supply. Law n.6.305, Decree n.93.563, of 11/11/86, normative instruction n.12 April 2015.
  2. 2.
    Kiliç, K., Boyacl, I.H., Koksel, H., Kusmenoglu, I.: A classification system for beans using computer vision system and artificial neural networks. J. Food Eng. 78, 897–904 (2007)CrossRefGoogle Scholar
  3. 3.
    Aguilera, J., Cipriano, A., Erana, M., Lillo, I., Mery, D., Soto, A.: Computer vision for quality control in latin American food industry, a case study. In: International Conference on Computer Vision (ICCV2007): Workshop on Computer Vision Applications for Developing Countries (2007)Google Scholar
  4. 4.
    Venora, G., Grillo, O., Ravalli, C., Cremonini, R.: Tuscany beans landraces, on-line identification from seeds inspection by image analysis and linear discriminant analysis. Agrochimica 51, 254–268 (2007)Google Scholar
  5. 5.
    Venora, G., Grillo, O., Ravalli, C., Cremonini, R.: Identification of Italian landraces of bean (phaseolus vulgaris l.) using an image analysis system. Sci. Hortic. 121, 410–418 (2009)CrossRefGoogle Scholar
  6. 6.
    Laurent, B., Ousman, B., Dzudie, T., Carl, M.M., Emmanuel, T.: Digital camera images processing of hard-to-cook beans. J. Eng. Technol. Res. 2, 177–188 (2010)Google Scholar
  7. 7.
    Araújo, S.A., Pessota, J.H., Kim, H.Y.: Beans quality inspection using correlation-based granulometry. Eng. Appl. Artif. Intell. 40, 84–94 (2015)CrossRefGoogle Scholar
  8. 8.
    Souza, T.L.P.O., Pereira, H.S., Faria, L.C., Wendland, A., Costa, J.G.C., Abreu, A.F.B., Dias, J.L.C., Magaldi, M.C.S., Sousa, N.P., Peloso, M.J.D., Melo, L.C. (2013) Common bean cultivars from Embrapa and partners available for 2013. Technical Statement, 211, 16. Accessed on December 2013
  9. 9.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer Science & Business Media, Heidelberg (2013)Google Scholar
  10. 10.
    Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. ISTE-Wiley, Hoboken (2010). ISBN: 9781848212152 (p. 520)Google Scholar
  11. 11.
    Alves, W.A.L., Morimitsu, A., Hashimoto, R.F.: Scale-space representation based on levelings through hierarchies of level sets. In: Proceedings of the 12th International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing ISMM 2015 (2015)Google Scholar
  12. 12.
    Alves, W., Hashimoto, R.: Ultimate grain filter. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2953–2957 (2014)Google Scholar
  13. 13.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Comput. 22, 761–767 (2004). British Machine Vision Computing (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • S. A. Araújo
    • 1
    Email author
  • W. A. L. Alves
    • 1
  • P. A. Belan
    • 1
  • K. P. Anselmo
    • 1
  1. 1.Informatics and Knowledge Management Graduate ProgramUniversidade Nove de JulhoSão PauloBrazil

Personalised recommendations