Advertisement

Segmentation of Building Facade Towers

  • Gayane ShaluntsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)

Abstract

Architectural styles are phases of development that classify architecture in the sense of historic periods, regions and cultural influences. The article presents the first approach, performing automatic segmentation of building facade towers in the framework of an image-based architectural style classification system. The observed buildings, featuring towers, belong to Romanesque, Gothic and Baroque architectural styles. The method is a pipeline unifying bilateral symmetry detection, graph-based segmentation approaches and image analysis and processing technique. It employs the specific visual features of the outstanding architectural element tower - vertical bilateral symmetry, raising out of the main building and solidity. The approach is robust to high perspective distortions. It comprises two branches, targeting facades with single and double towers correspondingly. The performance evaluation on a vast number of images reports extremely high segmentation precision.

Keywords

Bilateral Symmetry Foreground Pixel Architectural Style Architectural Element Image Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fletcher, B.: A history of architecture on the comparative method, 5th edn. Scribner’s, Batsford, London (1920)Google Scholar
  2. 2.
    Zheng, Y.T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.S., Neven, H.: Tour the world: building a web-scale landmark recognition engine. In: Proceedings of the 20th CVPR, Miami, Florida, USA, pp. 1085–1092. IEEE (2009)Google Scholar
  3. 3.
    Mathias, M., Martinovic, A., Weissenberg, J., Haegler, S., Gool, L.V.: Automatic architectural style recognition. In: Proceedings of the 4th International Workshop on 3D Virtual Reconstruction and Visualization of Complex Architectures. International Society for Photogrammetry and Remote Sensing, Trento, Italy, pp. 280–289 (2011)Google Scholar
  4. 4.
    Xu, Z., Tao, D., Zhang, Y., Wu, J., Tsoi, A.C.: Architectural style classification using multinomial latent logistic regression. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 600–615. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Goel, A., Juneja, M., Jawahar, C.V.: Are buildings only instances?: exploration in architectural style categories. In: Proceedings of the ICVGIP, Mumbai, India, pp. 1–8 (2012)Google Scholar
  6. 6.
    Zhang, L., Song, M., Liu, X., Sun, L., Chen, C., Bu, J.: Recognizing architecture styles by hierarchical sparse coding of blocklets. Inf. Sci. 254, 141–154 (2014)CrossRefGoogle Scholar
  7. 7.
    Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N.: Parsing facades with shape grammars and reinforcement learning. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1744–1756 (2013)CrossRefGoogle Scholar
  8. 8.
    Zhang, W., Kosecka, J.: Hierarchical building recognition. Image Vis. Comput. 25(5), 704–716 (2004)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Crandall, D., Huttenlocher, D.: Landmark classification in large-scale image collections. In: Proceedings of 12th ICCV, Kyoto, Japan, pp. 1957–1964. IEEE (2009)Google Scholar
  10. 10.
    Cornelis, N., Leibe, B., Cornelis, K., Gool, L.V.: 3d urban scene modeling integrating recognition and reconstruction. IJCV 78, 121–141 (2008)CrossRefGoogle Scholar
  11. 11.
    Shalunts, G., Haxhimusa, Y., Sablatnig, R.: Architectural style classification of building facade windows. In: Bebis, G., et al. (eds.) ISVC 2011, Part II. LNCS, vol. 6939, pp. 280–289. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Shalunts, G., Haxhimusa, Y., Sablatnig, R.: Classification of gothic and baroque architectural elements. In: Proceedings of the 19th IWSSIP. LNCS, Vienna, Austria, pp. 330–333. IEEE (2012)Google Scholar
  13. 13.
    Shalunts, G., Haxhimusa, Y., Sablatnig, R.: Architectural style classification of domes. In: Bebis, G., et al. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 420–429. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Shalunts, G., Haxhimusa, Y., Sablatnig, R.: Segmentation of building facade domes. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 324–331. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Illustrated architecture dictionary: Tower (2015). http://www.buffaloah.com/a/DCTNRY/t/tower.html, Accessed August 4, 2015
  16. 16.
    Loy, G., Eklundh, J.-O.: Detecting symmetry and symmetric constellations of features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 508–521. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  18. 18.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)CrossRefGoogle Scholar
  19. 19.
    Laurent, G., Men, H.L., Jean-Pierre, C.: The hierarchy of the cocoons of a graph and its application to image segmentation. PRL 24, 1059–1066 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.SAIL LABS Technology GmbHViennaAustria

Personalised recommendations