User-Assisted Inverse Procedural Facade Modeling and Compressed Image Rendering

  • Huilong Zhuo
  • Shengchuan Zhou
  • Bedrich BenesEmail author
  • David Whittinghill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)


We take advantage of human intuition by encoding facades into a procedural representation. Our user-assisted inverse procedural modeling approach allows users to exploit repetitions and symmetries of facades to create a split grammar representation of the input. Terminal symbols correspond to repeating elements such as windows, window panes, and doors and their distributions are encoded as the production rules. Our participants achieved a compression factor that averaged 57 % (min = 12 %, max = 99 %) while taking on average 7 min (min = 1, max = 25) to compress an image. The compressed facades do not suffer from occlusion problems present in the input, such as trees or cars. Our second contribution is a novel rendering algorithm that directly displays the compressed facades in their procedural form by interpreting the procedural rules during texture lookup. This algorithm provides considerable memory savings while achieving comparable rendering performance.


Input Image Interactive Session Procedural Rule Compression Factor Average Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bao, F., Schwarz, M., Wonka, P.: Procedural facade variations from a single layout. ACM Trans. Graph. 32, 8:1–8:13 (2013)Google Scholar
  2. 2.
    Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of buildings. ACM Trans. Graph. 25, 614–623 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhang, H., Xu, K., Jiang, W., Lin, J., Cohen-Or, D., Chen, B.: Layered analysis of irregular facades via symmetry maximization. ACM Trans. Graph. 32, 121:1–121:13 (2013)Google Scholar
  4. 4.
    Stava, O., Benes, B., Mech, R., Aliaga, D.G., Kristof, P.: Inverse procedural modeling by automatic generation of L-systems. Comput. Graph. Forum 29, 665–674 (2010)CrossRefGoogle Scholar
  5. 5.
    Haegler, S., Wonka, P., Arisona, S.M., Gool, L.V., Müller, P.: Grammar-based encoding of facades. In: Proceedings of the EGSR, Eurographics Association, pp. 1479–1487 (2010)Google Scholar
  6. 6.
    Wu, F., Yan, D.M., Dong, W., Zhang, X., Wonka, P.: Inverse procedural modeling of facade layouts. Technical report, arXiv:1308.0419 [cs.GR] (2013)
  7. 7.
    Lipp, M., Wonka, P., Wimmer, M.: Interactive visual editing of grammars for procedural architecture. ACM Trans. Graph. 27, 102:1–102:10 (2008)CrossRefGoogle Scholar
  8. 8.
    Parish, Y.I.H., Müller, P.: Procedural modeling of cities. In: Proceedings SIGGRAPH, pp. 301–308. ACM Press (2001)Google Scholar
  9. 9.
    Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. ACM Trans. Graph. 22, 669–677 (2003)CrossRefGoogle Scholar
  10. 10.
    Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling for virtual worlds. Comput. Graph. Forum 33, 31–50 (2014)CrossRefGoogle Scholar
  11. 11.
    Aliaga, D.G., Rosen, P.A., Bekins, D.R.: Style grammars for interactive visualization of architecture. IEEE TVCG 13, 786–797 (2007)Google Scholar
  12. 12.
    Hohmann, B., Krispel, U., Havemann, S., Fellner, D.: Cityfit - high-quality urban reconstruction by fitting shape grammars to image and derived textured point clouds. In: Proceedings of the International Workshop 3D-ARCH 2009 (2009)Google Scholar
  13. 13.
    Vanegas, C.A., Garcia-Dorado, I., Aliaga, D.G., Benes, B., Waddell, P.: Inverse design of urban procedural models. ACM Trans. Graph. 31, 168:1–168:11 (2012)CrossRefGoogle Scholar
  14. 14.
    Stava, O., Pirk, S., Kratt, J., Chen, B., Mch, R., Deussen, O., Benes, B.: Inverse procedural modelling of trees. Comput. Graph. Forum 33, 118–131 (2014)CrossRefGoogle Scholar
  15. 15.
    Müller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling of facades. ACM Trans. Graph. 26, 85 (2007)CrossRefGoogle Scholar
  16. 16.
    Musialski, P., Wonka, P., Recheis, M., Maierhofer, S., Purgathofer, W.: Symmetry-based facade repair. In: Vision, Modeling, and Visualization Workshop 2009 (2009)Google Scholar
  17. 17.
    Teboul, O., Simon, L., Koutsourakis, P., Paragios, N.: Segmentation of building facades using procedural shape priors. In: Proceedings of CVPR, pp. 3105–3112 (2010)Google Scholar
  18. 18.
    Demir, I., Aliaga, D.G., Benes, B.: Coupled segmentation and similarity detection for architectural models. ACM Trans. Graph. 34, 104:1–104:11 (2015)CrossRefGoogle Scholar
  19. 19.
    Boulch, A., Houllier, S., Marlet, R., Tournaire, O.: Semantizing complex 3D scenes using constrained attribute grammars. Comput. Graph. Forum 32, 33–42 (2013)CrossRefGoogle Scholar
  20. 20.
    Martinovic, A., Van Gool, L.: Bayesian grammar learning for inverse procedural modeling. In: Proceedings of CVPR, pp. 201–208 (2013)Google Scholar
  21. 21.
    Shen, C.H., Huang, S.S., Fu, H., Hu, S.M.: Adaptive partitioning of urban facades. ACM Trans. Graph. 30, 184:1–184:10 (2011)CrossRefGoogle Scholar
  22. 22.
    Vanegas, C.A., Aliaga, D.G., Beneš, B.: Building reconstruction using manhattan-world grammars. In: Proceedings of CVPR, pp. 358–365 (2010)Google Scholar
  23. 23.
    Ceylan, D., Mitra, N.J., Li, H., Weise, T., Pauly, M.: Factored facade acquisition using symmetric line arrangements. Comp. Graph. Forum 31, 671–680 (2012)CrossRefGoogle Scholar
  24. 24.
    Wan, G., Sharf, A.: Applications of geometry processing: grammar-based 3D facade segmentation and reconstruction. Comput. Graph. 36, 216–223 (2012)CrossRefGoogle Scholar
  25. 25.
    Kerber, J., Bokeloh, M., Wand, M., Seidel, H.P.: Scalable symmetry detection for urban scenes. Comput. Graph. Forum 32, 3–15 (2013)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Zheng, Q., Sharf, A., Cohen-Or, D., Chen, B., Mitra, N.J.: 2D–3D fusion for layer decomposition of urban facades. In: Proceedings of ICCV, pp. 882–889 (2011)Google Scholar
  27. 27.
    Musialski, P., Wimmer, M., Wonka, P.: Interactive coherence-based facade modeling. Comp. Graph. Forum 31, 661–670 (2012)CrossRefGoogle Scholar
  28. 28.
    AlHalawani, S., Yang, Y.L., Liu, H., Mitra, N.J.: Interactive facades analysis and synthesis of semi-regular facades. Comput. Graph. Forum 32, 215–224 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Huilong Zhuo
    • 1
  • Shengchuan Zhou
    • 2
  • Bedrich Benes
    • 1
    Email author
  • David Whittinghill
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Qingdao Geotechnical Investigation and Surveying Research InstituteQingdaoChina

Personalised recommendations