Guided High-Quality Rendering

  • Thorsten RothEmail author
  • Martin Weier
  • Jens Maiero
  • André Hinkenjann
  • Yongmin Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9475)


We present a system which allows for guiding the image quality in global illumination (GI) methods by user-specified regions of interest (ROIs). This is done with either a tracked interaction device or a mouse-based method, making it possible to create a visualization with varying convergence rates throughout one image towards a GI solution. To achieve this, we introduce a scheduling approach based on Sparse Matrix Compression (SMC) for efficient generation and distribution of rendering tasks on the GPU that allows for altering the sampling density over the image plane. Moreover, we present a prototypical approach for filtering the newly, possibly sparse samples to a final image. Finally, we show how large-scale display systems can benefit from rendering with ROIs.


Urban Sprawl Display System Kernel Size Visual Context Global Illumination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kajiya, J.T.: The rendering equation. ACM SIGGRAPH Comput. Graph. 20, 143–150 (1986)CrossRefGoogle Scholar
  2. 2.
    Robertson, G.G., Mackinlay, J.D.: The document lens. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, UIST 1993. ACM, New York, NY, USA, pp. 101–108 (1993)Google Scholar
  3. 3.
    Lamping, J., Rao, R.: Laying out and visualizing large trees using a hyperbolic space. In: Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, UIST 1994. ACM, New York, NY, USA, pp. 13–14 (1994)Google Scholar
  4. 4.
    Papadopoulos, C., Kaufman, A.E.: Acuity-driven gigapixel visualization. IEEE Trans. Vis. Comput. Graph. 19, 2886–2895 (2013)CrossRefGoogle Scholar
  5. 5.
    LaMar, E., Hamann, B., Joy, K.I.: A magnification lens for interactive volume visualization. In: Proceedings of the Ninth Pacific Conference on Computer Graphics and Applications, pp. 223–232 (2001)Google Scholar
  6. 6.
    Krüger, J., Schneider, J., Westermann, R.: Clearview: an interactive context preserving hotspot visualization technique. IEEE Trans. Vis. Comput. Graph. 12, 941–948 (2006)CrossRefGoogle Scholar
  7. 7.
    Levoy, M., Whitaker, R.: Gaze-directed volume rendering. In: Proceedings of the 1990 Symposium on Interactive 3D Graphics, I3D 1990. ACM, New York, NY, USA, pp. 217–223 (1990)Google Scholar
  8. 8.
    Funkhouser, T.A., Squin, C.H.: Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments. In: Proceedings of the 20th Annual conference on Computer Graphics and Interactive Techniques, pp. 247–254, ACM (1993)Google Scholar
  9. 9.
    Yee, H., Pattanaik, S., Greenberg, D.P.: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. Graph. 20, 39–65 (2001)CrossRefGoogle Scholar
  10. 10.
    Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3d graphics. ACM Trans. Graph. (TOG) 31, 164 (2012)CrossRefGoogle Scholar
  11. 11.
    Murphy, H., Duchowski, A.T.: Gaze-contingent level of detail rendering. EuroGraphics 2001 (2001)Google Scholar
  12. 12.
    Weaver, K.A.: Design and evaluation of a perceptually adaptive rendering system for immersive virtual reality environments. Master’s thesis, Iowa State University (2007)Google Scholar
  13. 13.
    Weier, M., Maiero, J., Roth, T., Hinkenjann, A., Slusallek, P.: Enhancing rendering performance with view-direction-based rendering techniques for large, high resolution multi-display systems. In: 11. Workshop Virtuelle Realität und Augmented Reality der GI-Fachgruppe VR/AR (2014)Google Scholar
  14. 14.
    Fujita, M., Harada, T.: Foveated real-time ray tracing for virtual reality headset (2014)Google Scholar
  15. 15.
    Delbracio, M., Mus, P., Buades, A., Chauvier, J., Phelps, N., Morel, J.M.: Boosting Monte Carlo rendering by ray histogram fusion. ACM Trans. Graph. 33, 8:1–8:15 (2014)CrossRefGoogle Scholar
  16. 16.
    Szeracki, S., Roth, T., Hinkenjann, A., Li, Y.: Boosting histogram-based denoising methods with gpu optimizations. In: Workshop Virtuelle Realität und Augmented Reality der GI-Fachgruppe VR/AR (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thorsten Roth
    • 1
    • 2
    Email author
  • Martin Weier
    • 1
    • 3
  • Jens Maiero
    • 1
    • 2
  • André Hinkenjann
    • 1
  • Yongmin Li
    • 2
  1. 1.Institute of Visual ComputingSankt AugustinGermany
  2. 2.Brunel University LondonUxbridgeUK
  3. 3.Saarland University Computer Graphics LabSaarbrückenGermany

Personalised recommendations