Abstract
The stereo correspondence problem has received significant attention in literature during approximately three decades. During that period of time, the development on stereo matching algorithms has been quite considerable. In contrast, the proposals on evaluation methods for stereo matching algorithms are not so many. This is not trivial issue, since an objective assessment of algorithms is required not only to measure improvements on the area, but also to properly identify where the gaps really are, and consequently, guiding the research. In this paper, a systematic review on evaluation methods for stereo matching algorithms is presented. The contributions are not only on the found results, but also on how it is explained and presented: aiming to be useful for the researching community on visual computing, in which such systematic review process is not yet broadly adopted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Morales, S., Klette, R.: A third eye for performance evaluation in stereo sequence analysis. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1078–1086. Springer, Heidelberg (2009)
Keller, C.G., Enzweiler, M., Gavrila, D.M.: A new benchmark for stereo-based pedestrian detection. In: Intelligent Vehicles Symposium (IV), pp. 691–696 IEEE (2011)
Nielsen, M., Andersen, H.J., Slaughter, D.C., Granum, E.: Ground truth evaluation of computer vision based 3D reconstruction of synthesized and real plant images. Precis. Agric. 8, 49–62 (2007)
Wang, Z.-F., Zheng, Z.-G.: A region based stereo matching algorithm using cooperative optimization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)
Cabezas, I.: Evaluation of disparity maps, Doctoral thesis. Universidad del Valle (2013)
Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings. 2003, pp. I–195. IEEE (2003)
Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Heidelberg (2014)
Cabezas, I., Padilla, V., Trujillo, M.: BMPRE: An error measure for evaluating disparity maps. In: ICSP, pp. 1051–1055 (2012)
Cabezas, I., Padilla, V., Trujillo, M.: A measure for accuracy disparity maps evaluation. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 223–231. Springer, Heidelberg (2011)
Haeusler, R., Klette, R.: Evaluation of stereo confidence measures on synthetic and recorded image data. In: International Conference on Informatics, Electronics & Vision (ICIEV), pp. 963–968. IEEE (2012)
Kitchenham, B.: Procedures for performing systematic reviews. Keele University, Keele, UK, pp. 1–26 (2004)
Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: EASE, pp. 68–77. British Computer Society, Italy (2008)
Morales, S., Klette, R.: Ground truth evaluation of stereo algorithms for real world applications. In: Koch, R., Huang, F. (eds.) ACCV 2010 Workshops, Part II. LNCS, vol. 6469, pp. 152–162. Springer, Heidelberg (2011)
Hirschmuller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Analy. Mach. Intell. 31, 1582–1599 (2009)
Leclercq, P., Morris, J.: Robustness to noise of stereo matching. In: Proceedings of 12th International Conference on Image Analysis and Processing, pp. 606–611 IEEE (2003)
Szeliski, R., Zabih, R.: An experimental comparison of stereo algorithms. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 1–19. Springer, Heidelberg (2000)
Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 781–788 IEEE (1999)
Haeusler, R., Klette, R.: Benchmarking stereo data (not the matching algorithms). In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 383–392. Springer, Heidelberg (2010)
Sellent, A., Wingbermühle, J.: Quality assessment of non-dense image correspondences. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part II. LNCS, vol. 7584, pp. 114–123. Springer, Heidelberg (2012)
Kondermann, D., Nair, R., Meister, S., Mischler, W., Güssefeld, B., Honauer, K., Hofmann, S., Brenner, C., Jähne, B.: Stereo ground truth with error bars. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 595–610. Springer, Heidelberg (2015)
Kostlivá, J., Čech, J.: Others: Feasibility boundary in dense and semi-dense stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 IEEE (2007)
Neilson, D., Yang, Y.-H.: Evaluation of constructable match cost measures for stereo correspondence using cluster ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8. IEEE (2008)
Malpica, W., Bovik, A.C.: Range image quality assessment by structural similarity. In: Furht, B. (ed.) Encyclopedia of Multimedia, pp. 757–762. Springer, New York (2008)
Shen, Y., Lu, C., Xu, P., Xu, L.: Objective quality assessment of noised stereoscopic images. In: ICMTMA, pp. 745–747. IEEE (2011)
van der Mark, W., Gavrila, D.M.: Real-time dense stereo for intelligent vehicles. IEEE Trans. Intell. Transp. Syst. 7, 38–50 (2006)
Leibe, B., Cornelis, N., Cornelis, K., Van Gool, L.: Dynamic 3D scene analysis from a moving vehicle. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)
Steingrube, P., Gehrig, S.K., Franke, U.: Performance evaluation of stereo algorithms for automotive applications. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 285–294. Springer, Heidelberg (2009)
Morales, S., Vaudrey, T., Klette, R.: Robustness evaluation of stereo algorithms on long stereo sequences. In: Intelligent Vehicles Symposium, pp. 347–352. IEEE (2009)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361. IEEE (2012)
Hamilton, O.K., Breckon, T.P., Bai, X., Kamata, S.: A foreground object based quantitative assessment of dense stereo approaches for use in automotive environments. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 418–422 IEEE (2013)
Woodward, A., Leclercq, P., Delmas, P., Gimel’farb, G.: Generation of an accurate facial ground truth for stereo algorithm evaluation. In: Wojciechowski, K., Smolka, B., Palus, H., Kozera, R.S., Skarbek, W., Noakes, L. (eds.) CVG 2006. Computational Imaging and Vision, pp. 534–539. Springer, Heidelberg (2006)
Gong, M., Yang, R., Wang, L., Gong, M.: A performance study on different cost aggregation approaches used in real-time stereo matching. Int. J. Comput. Vis. 75, 283–296 (2007)
Tombari, F., Mattoccia, S., Di Stefano, L.: Stereo for robots: quantitative evaluation of efficient and low-memory dense stereo algorithms. In: 11th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1231–1238. IEEE (2010)
Kelly, P.: Pedestrian detection and tracking using stereo vision techniques. Dublin City University (2007)
Kelly, P., O’Connor, N.E., Smeaton, A.F.: A framework for evaluating stereo-based pedestrian detection techniques. IEEE Trans. Circ. Syst. Video Technol. 18, 1163–1167 (2008)
Kogler, J., Eibensteiner, F., Humenberger, M., Gelautz, M., Scharinger, J.: Ground truth evaluation for event-based silicon retina stereo data. In: CVPRW, pp. 649–656. IEEE (2013)
Aguilar, M.A., del Mar Saldana, M., Aguilar, F.J.: Generation and quality assessment of stereo-extracted DSM from GeoEye-1 and WorldView-2 imagery. IEEE Trans. Geosci. Remote Sens. 52, 1259–1271 (2014)
Shin, B.-S., Caudillo, D., Klette, R.: Evaluation of two stereo matchers on long real-world video sequences. Pattern Recogn. 48, 1113–1124 (2015)
Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene flow from sparse or dense stereo data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 739–751. Springer, Heidelberg (2008)
Fuhr, G., Fickel, G.P., Dal’Aqua, L.P., Jung, C.R., Malzbender, T., Samadani, R.: An evaluation of stereo matching methods for view interpolation. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 403–407. IEEE (2013)
Vandewalle, P., Varekamp, C.: Disparity map quality for image-based rendering based on multiple metrics. In: International Conference on 3D Imaging (IC3D), pp. 1–5. IEEE (2014)
Hu, X., Mordohai, P.: A quantitative evaluation of confidence measures for stereo vision. IEEE Trans. Pattern Analy. Mach. Intell. 34, 2121–2133 (2012)
Zhang, Z., Hou, C., Shen, L., Yang, J.: An objective evaluation for disparity map based on the disparity gradient and disparity acceleration. In: ITCS, pp. 452–455. IEEE (2009)
Varekamp, C., Hinnen, K., Simons, W.: Detection and correction of disparity estimation errors via supervised learning. In: 2013 International Conference on 3D Imaging (IC3D), pp. 1–7. IEEE (2013)
Haeusler, R., Nair, R., Kondermann, D.: Ensemble learning for confidence measures in stereo vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 305–312. IEEE (2013)
Milani, S., Ferrario, D., Tubaro, S.: No-reference quality metric for depth maps. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 408–412. IEEE (2013)
Hermann, S., Morales, S., Klette, R.: Half-resolution semi-global stereo matching. In: Intelligent Vehicles Symposium (IV), pp. 201–206. IEEE (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Vargas, C., Cabezas, I., Branch, J.W. (2015). Stereo Correspondence Evaluation Methods: A Systematic Review. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-27863-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27862-9
Online ISBN: 978-3-319-27863-6
eBook Packages: Computer ScienceComputer Science (R0)