Skip to main content

3D Perception for Autonomous Robot Exploration

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

We propose an online 3D sensor-based algorithm for autonomous robot exploration in an indoor setting. Our algorithm consists of two modules, a proactive open space detection module, and a reactive obstacle avoidance module. The former, which is the primary contribution of the paper, is responsible for guiding the robot towards meaningful open spaces based on high level navigation goals. This generally translates to identifying open doors or corridor vanishing points in a typical indoor setting. The latter is a necessary component that enables safe autonomous exploration by preventing the robot from colliding with objects along the moving path. Assuming a 3D range sensor is mounted on the robot, it continues to scan and acquire signal from its surroundings as it explores in an unknown environment. From each 3D scan, the two modules function cooperatively to identify any open spaces and obstacles within the generated point cloud using robust geometric estimation methods. Combination of the two modules provides the basic capability of a autonomous robot to explore an unknown environment freely. Experimental results with the proposed algorithm on both real world and simulated data are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wiki.ros.org/gazebo.

  2. 2.

    http://wiki.ros.org/hector_quadrotor.

References

  1. González-Baños, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. I. J. Robotic Res. 21, 829–848 (2002)

    Article  Google Scholar 

  2. Dudek, G., Jenkin, M.R.M.: Computational principles of mobile robotics. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  3. Lai, J., Mejías, L., Ford, J.J.: Airborne vision-based collision-detection system. J. Field Robot. 28, 137–157 (2011)

    Article  MATH  Google Scholar 

  4. Biswas, J., Veloso, M.M.: Depth camera based localization and navigation for indoor mobile robots. In: RGB-D Workshop in Robotics: Science and Systems (RSS) (2011)

    Google Scholar 

  5. Zingg, S., Scaramuzza, D., Weiss, S., Siegwart, R.: MAV navigation through indoor corridors using optical flow. In: ICRA. IEEE (2010)

    Google Scholar 

  6. Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor environments using single image perspective cues. In: ICRA, pp. 5776–5783. IEEE (2011)

    Google Scholar 

  7. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor mav. In: IROS. (2012)

    Google Scholar 

  8. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer, F., Pollefeys, M.: Pixhawk: a micro aerial vehicle design for autonomous flight using onboard computer vision. Auton. Robots 33, 21–39 (2012)

    Article  Google Scholar 

  9. Celik, K., Chung, S.J., Clausman, M., Somani, A.K.: Monocular vision slam for indoor aerial vehicles. In: IROS. IEEE (2009)

    Google Scholar 

  10. Cruz, L., Lucio, D., Velho, L.: Kinect and RGBD images: challenges and applications. In: SIBGRAPI Tutorials (2012)

    Google Scholar 

  11. Herbst, E., Ren, X., Fox, D.: RGB-D flow: dense 3-D motion estimation using color and depth. In: ICRA, pp. 2276–2282 (2013)

    Google Scholar 

  12. Shen, S., Michael, N., Kumar, V.: Autonomous indoor 3D exploration with a micro-aerial vehicle. In: ICRA, pp. 9–15. IEEE (2012)

    Google Scholar 

  13. Murillo, A.C., Kosecká, J., Guerrero, J.J., Sagüés, C.: Visual door detection integrating appearance and shape cues. Robot. Auton. Syst. 56, 512–521 (2008)

    Article  Google Scholar 

  14. Tian, Y., Yang, X., Arditi, A.: Computer vision-based door detection for accessibility of unfamiliar environments to blind persons. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010, Part II. LNCS, vol. 6180, pp. 263–270. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Sekkal, R., Pasteau, F., Babel, M., Brun, B., Leplumey, I.: Simple monocular door detection and tracking. In: IEEE International Conference on Image Processing, ICIP 2013, Melbourne, Australie (2013)

    Google Scholar 

  16. Fernández-Caramés, C., Moreno, V., Curto, B., Rodríguez-Aragón, J., Serrano, F.: A real-time door detection system for domestic robotic navigation. J. Intell. Robot. Syst. 76(1), 119–136 (2013)

    Article  Google Scholar 

  17. Rusu, R.B., Meeussen, W., Chitta, S., Beetz, M.: Laser-based perception for door and handle identification. In: International Conference on Advanced Robotics (ICAR) (2009)

    Google Scholar 

  18. Derry, M., Argall, B.: Automated doorway detection for assistive shared-control wheelchairs. In: ICRA, pp. 1254–1259 (2013)

    Google Scholar 

  19. Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monocular reactive uav control in cluttered natural environments. In: CoRR (2012)

    Google Scholar 

  20. Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19, 129–147 (1982)

    Article  Google Scholar 

  21. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  22. Lange, S., Sünderhauf, N., Neubert, P., Drews, S., Protzel, P.: Autonomous corridor flight of a UAV using a low-cost and light-weight RGB-D camera. In: Rueckert, U., Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots. Non-series, vol. 101, pp. 183–192. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Pasteau, F., Babel, M., Sekkal, R.: Corridor following wheelchair by visual servoing. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2013, Tokyo, Japon (2013)

    Google Scholar 

  24. Krumm, J.: Intersection of two planes (2000)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by Defense Advanced Research Projects Agency under contract numbers W31P4Q-08-C-0264 and HR0011-09-C-0001. Any opinions, findings and conclusion or recommendations expressed in this material are those of the author and do not necessarily reflect the view of the Defense Advanced Research Projects Agency. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiejun Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, J., Kim, K., Zhang, L., Khosla, D. (2015). 3D Perception for Autonomous Robot Exploration. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics