Skip to main content

DPN-LRF: A Local Reference Frame for Robustly Handling Density Differences and Partial Occlusions

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

For the purpose of 3D keypoint matching, a Local Reference Frame (LRF), a local coordinate system of the keypoint, is one important information source for achieving repeatable feature descriptions and accurate pose estimations. We propose a robust LRF for two main point cloud disturbances: density differences and partial occlusions. To generate LRFs that are robust to such disturbances, we employ two strategies: normalizing the effects of point cloud density by approximating the surface area in the local region and using the dominant orientation of a normal vector around the keypoint. Experiments confirm that the proposed method has higher repeatability than state-of-the-art methods with respect to density differences and partial occlusions. It was also confirmed that the method enhances the reliability of keypoint matching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Guo, Y., Sohel, F.A., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vis. 105, 63–86 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Mian, A.S., Bennamoun, M., Owens, R.A.: On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. Int. J. Comput. Vis. 89, 348–361 (2010)

    Article  Google Scholar 

  4. Tombari, F., Salti, S., di Stefano, L.: Unique signatures of histograms for local surface description. In: European Conference on Computer Vision, pp. 356–369 (2010)

    Google Scholar 

  5. Petrelli, A., di Stefano, L.: On the repeatability of the local reference frame for partial shape matching. In: IEEE International Conference on Computer Vision, pp. 2244–2251 (2011)

    Google Scholar 

  6. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3d object recognition. In: Proceedings of the International Conference on Computer Vision Workshops, pp. 689–696 (2009)

    Google Scholar 

  7. dos Santos, T.R., Franz, A.M., Meinzer, H., Maier-Hein, L.: Robust multi-modal surface matching for intra-operative registration. In: IEEE International Symposium on Computer-Based@Medical Systems, pp. 1–6 (2011)

    Google Scholar 

  8. Stein, F., Medioni, G.G.: Structural indexing: Efficient 3-d object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 14, 125–145 (1992)

    Article  Google Scholar 

  9. Chua, C.S., Jarvis, R.: Point signatures: a new representation for 3D object recognition. Int. J. Comput. Vis. 25, 63–85 (1997)

    Article  Google Scholar 

  10. Sun, Y., Abidi, M.A.: Surface matching by 3D point’s fingerprint. In: ICCV, pp. 263–269 (2001)

    Google Scholar 

  11. Novatnack, J., Nishino, K.: Scale-Dependent/Invariant local 3D shape descriptors for fully automatic registration of multiple sets of range images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 440–453. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Zaharescu, A., Boyer, E., Varansi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), pp. 373–380 (2009)

    Google Scholar 

  13. Katz, S., Tal, A., Basri, R.: Direct visibility of point sets. ACM Trans. Graph. 26, 24 (2007)

    Article  Google Scholar 

  14. Rusu, R.B., Cousins, S.: 3d is here: Point cloud library (PCL). In: IEEE International Conference on Robotics and Automation, ICRA, IEEE (2011)

    Google Scholar 

  15. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: CVPR (2), pp. 506–513 (2004)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research (C) 26420398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Akizuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Akizuki, S., Hashimoto, M. (2015). DPN-LRF: A Local Reference Frame for Robustly Handling Density Differences and Partial Occlusions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics