Abstract
Convolutional neural networks are at the core of state-of-the-art approaches to a variety of computer vision tasks. Visualizations of neural networks typically take the form of static diagrams, or interactive toy-sized networks, which fail to illustrate the networks’ scale and complexity, and furthermore do not enable meaningful experimentation. Motivated by this observation, this paper presents a new interactive visualization of neural networks trained on handwritten digit recognition, with the intent of showing the actual behavior of the network given user-provided input. The user can interact with the network through a drawing pad, and watch the activation patterns of the network respond in real-time. The visualization is available at http://scs.ryerson.ca/~aharley/vis/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)
Corbett, F.D., Card, H.C.: Neural Java: Neural networks tutorial with Java applets (2000). http://lcn.epfl.ch/tutorial/english/. Accessed on 31 Nov 2014
Zeiler, Matthew D., Fergus, Rob: Visualizing and understanding convolutional networks. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)
Craven, M.W., Shavlik, J.W.: Visualizing learning and computation in artificial neural networks. Int. J. Artif. Intell. Tools 1, 399–425 (1992)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag New York Inc, Secaucus, NJ, USA (2006)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)
Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology, 4th edn. W.H. Freeman, New York (2001)
Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D thesis, Harvard University (1974)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)
Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: ICCV (2009)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
LeCun, Y., Kavukvuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: ISCAS, pp. 253–256 (2010)
Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. TVCG 12, 741–748 (2006)
Al-Awami, A., Beyer, J., Strobelt, H., Kasthuri, N., Lichtman, J., Pfister, H., Hadwiger, M.: NeuroLines: a subway map metaphor for visualizing nanoscale neuronal connectivity. TVCG 20, 2369–2378 (2014)
Lex, A., Partl, C., Kalkofen, D., Streit, M., Gratzl, S., Wassermann, A.M., Schmalstieg, D., Pfister, H.: Entourage: visualizing relationships between biological pathways using contextual subsets. TVCG 19, 2536–2545 (2013)
Van Ham, F., Perer, A.: Search, show context, expand on demand: supporting large graph exploration with degree-of-interest. TVCG 15, 953–960 (2009)
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Visual Languages, pp. 336–343 (1996)
Zell, A., Mache, N., Hbner, R., Mamier, G., Vogt, M., Schmalzl, M., Herrmann, K.U.: SNNS (Stuttgart Neural Network Simulator). In: Skrzypek, J. (ed.) Neural Network Simulation Environments: The Kluwer International Series in Engineering and Computer Science, vol. 254, pp. 165–186. Springer, US (1994)
Streeter, M.J., Ward, M.O., Alvarez, S.A.: N2Vis: an interactive visualization tool for neural networks. In: Visual Data Exploration and Analysis VII, pp. 234–241 (2001)
Tzeng, F.Y., Ma, K.L.: Opening the black box - Data driven visualization of neural networks. In: Visualization, pp. 383–390 (2005)
Srp, J., StehlĂk, L., Suda, M., Ĺ ašek, P., Zvánovcová, K.: Interactive neural network simulator (2007). http://sourceforge.net/projects/isns/. Accessed on 31 Nov 2014
Karpathy, A.: ConvNetJS: Deep learning in your browser (2014). http://cs.stanford.edu/people/karpathy/convnetjs/. Accessed on 31 Nov 2014
Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. TVCG 13, 1302–1309 (2007)
Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)
Rogowitz, B.E., Treinish, L.A.: How not to lie with visualization. Comput. Phys. 10, 268–273 (1996)
Nielsen, J.: Usability Engineering. Elsevier, Boston (1993)
Miller, R.B.: Response time in man-computer conversational transactions. In: Proceedings of AFIPS Fall Joint Computer Conference, vol. 33, pp. 267–277 (1968)
Card, S.K., Robertson, G.G., Mackinlay, J.D.: The information visualizer: an information workspace. In: ACM CHI, pp. 181–188 (1991)
Acknowledgements
The author gratefully thanks Tim McInerney and Kosta Derpanis for insightful discussions, and for helping improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Harley, A.W. (2015). An Interactive Node-Link Visualization of Convolutional Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_77
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_77
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)