Skip to main content

An Interactive Node-Link Visualization of Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Convolutional neural networks are at the core of state-of-the-art approaches to a variety of computer vision tasks. Visualizations of neural networks typically take the form of static diagrams, or interactive toy-sized networks, which fail to illustrate the networks’ scale and complexity, and furthermore do not enable meaningful experimentation. Motivated by this observation, this paper presents a new interactive visualization of neural networks trained on handwritten digit recognition, with the intent of showing the actual behavior of the network given user-provided input. The user can interact with the network through a drawing pad, and watch the activation patterns of the network respond in real-time. The visualization is available at http://scs.ryerson.ca/~aharley/vis/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  2. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  3. Corbett, F.D., Card, H.C.: Neural Java: Neural networks tutorial with Java applets (2000). http://lcn.epfl.ch/tutorial/english/. Accessed on 31 Nov 2014

  4. Zeiler, Matthew D., Fergus, Rob: Visualizing and understanding convolutional networks. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)

    Google Scholar 

  5. Craven, M.W., Shavlik, J.W.: Visualizing learning and computation in artificial neural networks. Int. J. Artif. Intell. Tools 1, 399–425 (1992)

    Article  Google Scholar 

  6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag New York Inc, Secaucus, NJ, USA (2006)

    MATH  Google Scholar 

  7. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  8. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.: Molecular Cell Biology, 4th edn. W.H. Freeman, New York (2001)

    Google Scholar 

  9. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D thesis, Harvard University (1974)

    Google Scholar 

  10. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  11. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: ICCV (2009)

    Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  13. LeCun, Y., Kavukvuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: ISCAS, pp. 253–256 (2010)

    Google Scholar 

  14. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. TVCG 12, 741–748 (2006)

    Google Scholar 

  15. Al-Awami, A., Beyer, J., Strobelt, H., Kasthuri, N., Lichtman, J., Pfister, H., Hadwiger, M.: NeuroLines: a subway map metaphor for visualizing nanoscale neuronal connectivity. TVCG 20, 2369–2378 (2014)

    Google Scholar 

  16. Lex, A., Partl, C., Kalkofen, D., Streit, M., Gratzl, S., Wassermann, A.M., Schmalstieg, D., Pfister, H.: Entourage: visualizing relationships between biological pathways using contextual subsets. TVCG 19, 2536–2545 (2013)

    Google Scholar 

  17. Van Ham, F., Perer, A.: Search, show context, expand on demand: supporting large graph exploration with degree-of-interest. TVCG 15, 953–960 (2009)

    Google Scholar 

  18. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  19. Zell, A., Mache, N., Hbner, R., Mamier, G., Vogt, M., Schmalzl, M., Herrmann, K.U.: SNNS (Stuttgart Neural Network Simulator). In: Skrzypek, J. (ed.) Neural Network Simulation Environments: The Kluwer International Series in Engineering and Computer Science, vol. 254, pp. 165–186. Springer, US (1994)

    Google Scholar 

  20. Streeter, M.J., Ward, M.O., Alvarez, S.A.: N2Vis: an interactive visualization tool for neural networks. In: Visual Data Exploration and Analysis VII, pp. 234–241 (2001)

    Google Scholar 

  21. Tzeng, F.Y., Ma, K.L.: Opening the black box - Data driven visualization of neural networks. In: Visualization, pp. 383–390 (2005)

    Google Scholar 

  22. Srp, J., Stehlík, L., Suda, M., Šašek, P., Zvánovcová, K.: Interactive neural network simulator (2007). http://sourceforge.net/projects/isns/. Accessed on 31 Nov 2014

  23. Karpathy, A.: ConvNetJS: Deep learning in your browser (2014). http://cs.stanford.edu/people/karpathy/convnetjs/. Accessed on 31 Nov 2014

  24. Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: a hybrid visualization of social networks. TVCG 13, 1302–1309 (2007)

    Google Scholar 

  25. Ware, C.: Information Visualization: Perception for Design. Elsevier, Amsterdam (2012)

    Google Scholar 

  26. Rogowitz, B.E., Treinish, L.A.: How not to lie with visualization. Comput. Phys. 10, 268–273 (1996)

    Article  Google Scholar 

  27. Nielsen, J.: Usability Engineering. Elsevier, Boston (1993)

    MATH  Google Scholar 

  28. Miller, R.B.: Response time in man-computer conversational transactions. In: Proceedings of AFIPS Fall Joint Computer Conference, vol. 33, pp. 267–277 (1968)

    Google Scholar 

  29. Card, S.K., Robertson, G.G., Mackinlay, J.D.: The information visualizer: an information workspace. In: ACM CHI, pp. 181–188 (1991)

    Google Scholar 

Download references

Acknowledgements

The author gratefully thanks Tim McInerney and Kosta Derpanis for insightful discussions, and for helping improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam W. Harley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Harley, A.W. (2015). An Interactive Node-Link Visualization of Convolutional Neural Networks. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics