Abstract
Querying is an essential instrument for meeting ad hoc information needs; however, current approaches for querying semantic data sources mostly target technologically versed users. Hence, there is a need for methods that make it possible for users with limited technological skills to express relatively complex ad hoc information needs in an easy and intuitive way. Visual methods for query formulation undertake the challenge of making querying independent of users’ technical skills and the knowledge of the underlying textual query language and the structure of data. In this paper, we present an ontology-based visual query system, OptiqueVQS, and report user experiments in two industrial settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: a survey. Seman. Web 2(2), 89–124 (2011)
Katifori, A., et al.: Ontology visualization methods - a survey. ACM Comput. Surv. 39(4), 1–43 (2007)
Soylu, A., et al.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Univ. Access Inf. Soc. (in press) 1–24 (2014)
Catarci, T., et al.: Visual query systems for databases: a survey. J. Vis. Lang. Comput. 8(2), 215–260 (1997)
Giese, M., et al.: Optique: zooming in on big data. IEEE Comput. Mag. 48(3), 60–67 (2015)
Leone, S., et al.: Exploiting tag clouds for database browsing and querying. In: CAiSE 2010 (2011)
Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 107–119. Springer, Heidelberg (2014)
Soylu, A., et al.: Ontology-based end-user visual query formulation: why, what, who, how, and which? Universal Access in the Information Society (submitted)
Soylu, A., Martin, G.: Qualifying ontology-based visual query formulation. In: FQAS 2015 (2015)
Arenas, M., et al.: Faceted search over ontology-enhanced RDF data. In: CIKM 2014 (2014)
Ambrus, O., et al.: Visual query system for analyzing social semantic web. In: WWW 2011 (2011)
Hogenboom, F., et al.: RDF-GL: A SPARQL-based graphical query language for RDF. In: Chbeir, R., Badr, Y., Abraham, A., Hassanien, A.-E. (eds.) Emergent Web Intelligence, pp. 87–116. Springer London (2010)
Barzdins, G., et al.: Graphical query language as SPARQL frontend. In: ADBIS 2009 (2009)
Haag, F., et al.: Visual querying of linked data with QueryVOWL. In: SumPre 2015 and HSWI 2014–2015 (2015)
Heim, P., Ziegler, J.: Faceted visual exploration of semantic data. In: HCIV 2009 (2011)
Haag, F., et al.: Visual SPARQL querying based on extended filter/flow graphs. In: AVI 2014 (2014)
Ambrus, O., et al.: Konduit VQB: a visual query builder for SPARQL on the social semantic desktop. In: VISSW 2010 (2010)
Brunetti, J.M., et al.: From overview to facets and pivoting for interactive exploration of semantic web data. Int. J. Seman. Web Inf. Syst. 9(1), 1–20 (2013)
Acknowledgements
This research is funded by “Optique” (EC FP7 318338), as well as the EPSRC projects Score!, DBOnto, and \(\text {MaSI}^3\).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-Ruiz, E., Giese, M., Horrocks, I. (2015). Ontology-Based Visual Query Formulation: An Industry Experience. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_75
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)