Skip to main content

Ontology-Based Visual Query Formulation: An Industry Experience

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Querying is an essential instrument for meeting ad hoc information needs; however, current approaches for querying semantic data sources mostly target technologically versed users. Hence, there is a need for methods that make it possible for users with limited technological skills to express relatively complex ad hoc information needs in an easy and intuitive way. Visual methods for query formulation undertake the challenge of making querying independent of users’ technical skills and the knowledge of the underlying textual query language and the structure of data. In this paper, we present an ontology-based visual query system, OptiqueVQS, and report user experiments in two industrial settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.optique-project.eu.

References

  1. Dadzie, A.S., Rowe, M.: Approaches to visualising linked data: a survey. Seman. Web 2(2), 89–124 (2011)

    Google Scholar 

  2. Katifori, A., et al.: Ontology visualization methods - a survey. ACM Comput. Surv. 39(4), 1–43 (2007)

    Article  Google Scholar 

  3. Soylu, A., et al.: Experiencing OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Univ. Access Inf. Soc. (in press) 1–24 (2014)

    Google Scholar 

  4. Catarci, T., et al.: Visual query systems for databases: a survey. J. Vis. Lang. Comput. 8(2), 215–260 (1997)

    Article  Google Scholar 

  5. Giese, M., et al.: Optique: zooming in on big data. IEEE Comput. Mag. 48(3), 60–67 (2015)

    Article  Google Scholar 

  6. Leone, S., et al.: Exploiting tag clouds for database browsing and querying. In: CAiSE 2010 (2011)

    Google Scholar 

  7. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 107–119. Springer, Heidelberg (2014)

    Google Scholar 

  8. Soylu, A., et al.: Ontology-based end-user visual query formulation: why, what, who, how, and which? Universal Access in the Information Society (submitted)

    Google Scholar 

  9. Soylu, A., Martin, G.: Qualifying ontology-based visual query formulation. In: FQAS 2015 (2015)

    Google Scholar 

  10. Arenas, M., et al.: Faceted search over ontology-enhanced RDF data. In: CIKM 2014 (2014)

    Google Scholar 

  11. Ambrus, O., et al.: Visual query system for analyzing social semantic web. In: WWW 2011 (2011)

    Google Scholar 

  12. Hogenboom, F., et al.: RDF-GL: A SPARQL-based graphical query language for RDF. In: Chbeir, R., Badr, Y., Abraham, A., Hassanien, A.-E. (eds.) Emergent Web Intelligence, pp. 87–116. Springer London (2010)

    Google Scholar 

  13. Barzdins, G., et al.: Graphical query language as SPARQL frontend. In: ADBIS 2009 (2009)

    Google Scholar 

  14. Haag, F., et al.: Visual querying of linked data with QueryVOWL. In: SumPre 2015 and HSWI 2014–2015 (2015)

    Google Scholar 

  15. Heim, P., Ziegler, J.: Faceted visual exploration of semantic data. In: HCIV 2009 (2011)

    Google Scholar 

  16. Haag, F., et al.: Visual SPARQL querying based on extended filter/flow graphs. In: AVI 2014 (2014)

    Google Scholar 

  17. Ambrus, O., et al.: Konduit VQB: a visual query builder for SPARQL on the social semantic desktop. In: VISSW 2010 (2010)

    Google Scholar 

  18. Brunetti, J.M., et al.: From overview to facets and pivoting for interactive exploration of semantic web data. Int. J. Seman. Web Inf. Syst. 9(1), 1–20 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by “Optique” (EC FP7 318338), as well as the EPSRC projects Score!, DBOnto, and \(\text {MaSI}^3\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Soylu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-Ruiz, E., Giese, M., Horrocks, I. (2015). Ontology-Based Visual Query Formulation: An Industry Experience. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics