Skip to main content

Hyperspectral Scene Analysis via Structure from Motion

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2879 Accesses

Abstract

We present an overview of a structure from motion (SFM) pipeline for processing hyperspectral imagery (HSI), and demonstrate the data exploitation advantages associated with post-processing HSI data in a 3D environment. Using only raw HSI datacubes as input, we leverage HSI anomaly detection and spectral matching to create a 3D spatial model of the scene being imaged. The resulting 3D space provides an intuitive basis for all forms of HSI analysis. We demonstrate the usefulness of the proposed HSI SFM pipeline through an experimental data set collected using an aerial hyperspectral sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)

    Google Scholar 

  2. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 835–846. ACM (2006)

    Google Scholar 

  3. Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: dense 3d reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 963–968. IEEE (2011)

    Google Scholar 

  4. Yuen, P.W., Richardson, M.: An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Sci. J. 58(5), 241–253 (2010)

    Article  Google Scholar 

  5. Van der Meer, F.D., van der Werff, H., van Ruitenbeek, F.J., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J., Woldai, T.: Multi-and hyperspectral geologic remote sensing: a review. Int. J. Appl. Earth Obs. Geoinf. 14(1), 112–128 (2012)

    Article  Google Scholar 

  6. Tochon, G., Féret, J., Valero, S., Martin, R., Knapp, D., Salembier, P., Chanussot, J., Asner, G.: On the use of binary partition trees for the tree crown segmentation of tropical rainforest hyperspectral images. Remote Sens. Environ. 159, 318–331 (2015)

    Article  Google Scholar 

  7. Resende, M.R., Bernucci, L.L.B., Quintanilha, J.A.: Monitoring the condition of roads pavement surfaces: proposal of methodology using hyperspectral images. J. Transp. Lit. 8(2), 201–220 (2014)

    Article  Google Scholar 

  8. Nieto, J.I., Monteiro, S.T., Viejo, D.: 3D geological modelling using laser and hyperspectral data. In: 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4568–4571. IEEE (2010)

    Google Scholar 

  9. Kim, M.H., Harvey, T.A., Kittle, D.S., Rushmeier, H., Dorsey, J., Prum, R.O., Brady, D.J.: 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. (TOG) 31(4), 38 (2012)

    Google Scholar 

  10. Miller, C.A., Walls, T.J.: Passive 3D scene reconstruction via hyperspectral imagery. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 413–422. Springer, Heidelberg (2014)

    Google Scholar 

  11. Neumann, J., Allman, E.C., Downes, T., Howard, J., Kruer, M., Lee, J., Linne von Berg, D., Leathers, R., Murray-Krezan, J., Nezis, N.: Demonstration of the MX-20SW standoff SWIR hyperspectral imaging ball gimbal system. MSS, Passive Sensors (2008)

    Google Scholar 

  12. Reed, I.S., Yu, X.: Adaptive multiple-band cfar detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990)

    Article  Google Scholar 

  13. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Underst. 68(2), 146–157 (1997)

    Article  Google Scholar 

  14. Zach, C.: Simple Sparse Bundle Adjustment (SSBA) (2011) http://www.inf.ethz.ch/personal/chzach/opensource.html. Accessed on October 2013

  15. Manolakis, D.G., Shaw, G.A., Keshava, N.: Comparative analysis of hyperspectral adaptive matched filter detectors. In: AeroSense 2000, International Society for Optics and Photonics, pp. 2–17 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey A. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Miller, C.A., Walls, T.J. (2015). Hyperspectral Scene Analysis via Structure from Motion. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics