Skip to main content

Deep Learning-Based Man-Made Object Detection from Hyperspectral Data

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Hyperspectral sensing, due to its intrinsic ability to capture the spectral responses of depicted materials, provides unique capabilities towards object detection and identification. In this paper, we tackle the problem of man-made object detection from hyperspectral data through a deep learning classification framework. By the effective exploitation of a Convolutional Neural Network we encode pixels’ spectral and spatial information and employ a Multi-Layer Perceptron to conduct the classification task. Experimental results and the performed quantitative validation on widely used hyperspectral datasets demonstrating the great potentials of the developed approach towards accurate and automated man-made object detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vescoukis, V., Doulamis, N., Karagiorgou, S.: A service oriented architecture for decision support systems in environmental crisis management. Future Gener. Comput. Syst. 28, 593–604 (2012)

    Article  Google Scholar 

  2. Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., Halkia, M., Kauffmann, M., Kemper, T., Lu, L., Marin-Herrera, M., Ouzounis, G., Scavazzon, M., Soille, P., Syrris, V., Zanchetta, L.: A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 2102–2131 (2013)

    Article  Google Scholar 

  3. Karantzalos, K.: Recent advances on 2D and 3D change detection in urban environments from remote sensing data. In: Helbich, M., Arsanjani, J.J., Leitner, M. (eds.) Computational Approaches for Urban Environments, vol. 13, pp. 237–272. Geotechnologies and the Environment, Springer, Switzerland (2015)

    Google Scholar 

  4. Florczyk, A., Ferri, S., Syrris, V., Kemper, T., Halkia, M., Soille, P.: A new european settlement map from optical fine scale remote sensed data. IEEE J. Sel. Top. Appl. Earth Obs. Remot. Sens. PP(99), 1–15 (2015)

    Article  Google Scholar 

  5. Gruen, A., Kuebler, O., Agouris, P.: Automatic Extraction of Man-made Objects from Aerial and Space Images I. Birkhaeuser, Basel (1995)

    Book  Google Scholar 

  6. Karantzalos, K., Argialas, D.: A region-based level set segmentation for automatic detection of man-made objects from aerial and satellite images. Photogram. Eng. Remote Sens. 75, 667–677 (2009)

    Article  Google Scholar 

  7. Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, U., Jung, J.: Results of the ISPRS benchmark on urban object detection and 3d building reconstruction. ISPRS J. Photogram. Remote Sens. 93, 256–271 (2014)

    Article  Google Scholar 

  8. Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios, N.: Simultaneous registration and change detection in multitemporal, very high resolution remote sensing data. In: IEEE Computer Vision and Pattern Recognition Workshops (CVPRW 2015) (2015)

    Google Scholar 

  9. Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios, N.: Building detection in very high resolution multispectral data with deep learning features. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015) (2015)

    Google Scholar 

  10. Karantzalos, K., Sotiras, A., Paragios, N.: Efficient and automated multi-modal satellite data registration through mrfs and linear programming. In: IEEE Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2014)

    Google Scholar 

  11. Manolakis, D., Truslow, E., Pieper, M., Cooley, T., Brueggeman, M.: Detection algorithms in hyperspectral imaging systems: an overview of practical algorithms. IEEE Signal Process. Mag. 31, 24–33 (2014)

    Article  Google Scholar 

  12. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2094–2107 (2014)

    Article  Google Scholar 

  13. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015) (2015)

    Google Scholar 

  14. Camps-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. J. Wiley and Sons, NJ, USA (2009)

    Book  MATH  Google Scholar 

  15. Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31, 45–54 (2014)

    Article  Google Scholar 

  16. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  17. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. NIPS 19, 153–160 (2007)

    Google Scholar 

  19. Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-Sanchez, A.J., Wiskott, L.: Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Trans. PAMI 35, 1847–1871 (2013)

    Article  Google Scholar 

  20. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  21. Halko, N., Martinsson, P., Tropp, J.: Finding structure with randomness: stochastic algorithms for constructing approximate matrix decompositions (2009). http://arxiv.org/abs/0909 (4061)

  22. Mura, M.D., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8, 542–546 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded from European Unions FP7 under grant agreement n.313161, eVACUATE Project (www.evacuate.eu)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Makantasis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Makantasis, K., Karantzalos, K., Doulamis, A., Loupos, K. (2015). Deep Learning-Based Man-Made Object Detection from Hyperspectral Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics