Abstract
Hyperspectral sensing, due to its intrinsic ability to capture the spectral responses of depicted materials, provides unique capabilities towards object detection and identification. In this paper, we tackle the problem of man-made object detection from hyperspectral data through a deep learning classification framework. By the effective exploitation of a Convolutional Neural Network we encode pixels’ spectral and spatial information and employ a Multi-Layer Perceptron to conduct the classification task. Experimental results and the performed quantitative validation on widely used hyperspectral datasets demonstrating the great potentials of the developed approach towards accurate and automated man-made object detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vescoukis, V., Doulamis, N., Karagiorgou, S.: A service oriented architecture for decision support systems in environmental crisis management. Future Gener. Comput. Syst. 28, 593–604 (2012)
Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., Halkia, M., Kauffmann, M., Kemper, T., Lu, L., Marin-Herrera, M., Ouzounis, G., Scavazzon, M., Soille, P., Syrris, V., Zanchetta, L.: A global human settlement layer from optical HR/VHR RS data: concept and first results. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 2102–2131 (2013)
Karantzalos, K.: Recent advances on 2D and 3D change detection in urban environments from remote sensing data. In: Helbich, M., Arsanjani, J.J., Leitner, M. (eds.) Computational Approaches for Urban Environments, vol. 13, pp. 237–272. Geotechnologies and the Environment, Springer, Switzerland (2015)
Florczyk, A., Ferri, S., Syrris, V., Kemper, T., Halkia, M., Soille, P.: A new european settlement map from optical fine scale remote sensed data. IEEE J. Sel. Top. Appl. Earth Obs. Remot. Sens. PP(99), 1–15 (2015)
Gruen, A., Kuebler, O., Agouris, P.: Automatic Extraction of Man-made Objects from Aerial and Space Images I. Birkhaeuser, Basel (1995)
Karantzalos, K., Argialas, D.: A region-based level set segmentation for automatic detection of man-made objects from aerial and satellite images. Photogram. Eng. Remote Sens. 75, 667–677 (2009)
Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J.D., Breitkopf, U., Jung, J.: Results of the ISPRS benchmark on urban object detection and 3d building reconstruction. ISPRS J. Photogram. Remote Sens. 93, 256–271 (2014)
Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios, N.: Simultaneous registration and change detection in multitemporal, very high resolution remote sensing data. In: IEEE Computer Vision and Pattern Recognition Workshops (CVPRW 2015) (2015)
Vakalopoulou, M., Karantzalos, K., Komodakis, N., Paragios, N.: Building detection in very high resolution multispectral data with deep learning features. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015) (2015)
Karantzalos, K., Sotiras, A., Paragios, N.: Efficient and automated multi-modal satellite data registration through mrfs and linear programming. In: IEEE Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2014)
Manolakis, D., Truslow, E., Pieper, M., Cooley, T., Brueggeman, M.: Detection algorithms in hyperspectral imaging systems: an overview of practical algorithms. IEEE Signal Process. Mag. 31, 24–33 (2014)
Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2094–2107 (2014)
Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015) (2015)
Camps-Valls, G., Bruzzone, L.: Kernel Methods for Remote Sensing Data Analysis. J. Wiley and Sons, NJ, USA (2009)
Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31, 45–54 (2014)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. NIPS 19, 153–160 (2007)
Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-Sanchez, A.J., Wiskott, L.: Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Trans. PAMI 35, 1847–1871 (2013)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)
Halko, N., Martinsson, P., Tropp, J.: Finding structure with randomness: stochastic algorithms for constructing approximate matrix decompositions (2009). http://arxiv.org/abs/0909 (4061)
Mura, M.D., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Geosci. Remote Sens. Lett. 8, 542–546 (2011)
Acknowledgements
This research was funded from European Unions FP7 under grant agreement n.313161, eVACUATE Project (www.evacuate.eu)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Makantasis, K., Karantzalos, K., Doulamis, A., Loupos, K. (2015). Deep Learning-Based Man-Made Object Detection from Hyperspectral Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_64
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)