Skip to main content

Variational Inference for Background Subtraction in Infrared Imagery

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

We propose a Gaussian mixture model with fixed but unknown number of components for background subtraction in infrared imagery. Following a Bayesian approach, our method automatically estimates the number of components as well as their parameters, while simultaneously it avoids over/under fitting. The equations for estimating model parameters are analytically derived and thus our method does not require any sampling algorithm that is computationally and memory inefficient. The pixel density estimate is followed by an efficient and highly accurate updating mechanism, which permits our system to be automatically adapted to dynamically changing visual conditions. Experimental results and comparisons with other methods indicate the high potential of the proposed method while keeping computational cost suitable for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Porikli, F.: Achieving real-time object detection and tracking under extreme conditions. J. Real-Time Image Proc. 1, 33–40 (2006)

    Article  Google Scholar 

  2. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1713–1727 (2008)

    Article  Google Scholar 

  3. Jungling, K., Arens, M.: Feature based person detection beyond the visible spectrum. In: IEEE Computer Vision and Pattern Recognition Workshops, CVPR 2009, pp. 30–37 (2009)

    Google Scholar 

  4. Latecki, L., Miezianko, R., Pokrajac, D.: Tracking motion objects in infrared videos. In: IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2005, pp. 99–104 (2005)

    Google Scholar 

  5. Wang, W., Zhang, J., Shen, C.: Improved human detection and classification in thermal images. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 2313–2316 (2010)

    Google Scholar 

  6. Doulamis, N.D.: Coupled multi-object tracking and labeling for vehicle trajectory estimation and matching. Multimedia Tools Appl. 50, 173–198 (2010)

    Article  Google Scholar 

  7. Kosmopoulos, D.I., Doulamis, N.D., Voulodimos, A.S.: Bayesian filter based behavior recognition in workflows allowing for user feedback. Comput. Vis. Image Underst. 116, 422–434 (2012)

    Article  Google Scholar 

  8. Voulodimos, A.S., Doulamis, N.D., Kosmopoulos, D.I., Varvarigou, T.A.: Improving multi-camera activity recognition by employing neural network based readjustment. Appl. Artif. Intell. 26, 97–118 (2012)

    Article  Google Scholar 

  9. Brutzer, S., Hoferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1937–1944 (2011)

    Google Scholar 

  10. Herrero, S., Bescós, J.: Background subtraction techniques: systematic evaluation and comparative analysis. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 33–42. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pp. 60–65 (2009)

    Google Scholar 

  12. Zheng, J., Wang, Y., Nihan, N., Hallenbeck, M.: Extracting roadway background image: mode-based approach. Transp. Res. Rec. J. Transp. Res. Board 2006, 82–88 (1944)

    Google Scholar 

  13. Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 780–785 (1997)

    Article  Google Scholar 

  15. Messelodi, S., Modena, C.M., Segata, N., Zanin, M.: A Kalman filter based background updating algorithm robust to sharp illumination changes. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 163–170. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261 (1999)

    Google Scholar 

  17. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, p. 252 (1999)

    Google Scholar 

  18. Makantasis, K., Doulamis, A., Matsatsinis, N.: Student-t background modeling for persons’ fall detection through visual cues. In: 2012 13th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), pp. 1–4 (2012)

    Google Scholar 

  19. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31 (2004)

    Google Scholar 

  20. Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27, 773–780 (2006)

    Article  Google Scholar 

  21. Davis, J., Sharma, V.: Fusion-based background-subtraction using contour saliency. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPR Workshops 2005, pp. 11–11 (2005)

    Google Scholar 

  22. Davis, J.W., Sharma, V.: Background-subtraction in thermal imagery using contour saliency. Int. J. Comput. Vis. 71, 161–181 (2007)

    Article  Google Scholar 

  23. Elguebaly, T., Bouguila, N.: Finite asymmetric generalized gaussian mixture models learning for infrared object detection. Comput. Vis. Image Underst. 117, 1659–1671 (2013)

    Article  Google Scholar 

  24. Dai, C., Zheng, Y., Li, X.: Pedestrian detection and tracking in infrared imagery using shape and appearance. Comput. Vis. Image Underst. 106, 288–299 (2007)

    Article  Google Scholar 

  25. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2007)

    Google Scholar 

  26. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  27. Dasgupta, S., Hsu, D.: On-line estimation with the multivariate gaussian distribution. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 278–292. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was funded from European Unions FP7 under grant agreement n.313161, eVACUATE Project (www.evacuate.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Makantasis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Makantasis, K., Doulamis, A., Loupos, K. (2015). Variational Inference for Background Subtraction in Infrared Imagery. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics