Abstract
We propose a Gaussian mixture model with fixed but unknown number of components for background subtraction in infrared imagery. Following a Bayesian approach, our method automatically estimates the number of components as well as their parameters, while simultaneously it avoids over/under fitting. The equations for estimating model parameters are analytically derived and thus our method does not require any sampling algorithm that is computationally and memory inefficient. The pixel density estimate is followed by an efficient and highly accurate updating mechanism, which permits our system to be automatically adapted to dynamically changing visual conditions. Experimental results and comparisons with other methods indicate the high potential of the proposed method while keeping computational cost suitable for real-time applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Porikli, F.: Achieving real-time object detection and tracking under extreme conditions. J. Real-Time Image Proc. 1, 33–40 (2006)
Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1713–1727 (2008)
Jungling, K., Arens, M.: Feature based person detection beyond the visible spectrum. In: IEEE Computer Vision and Pattern Recognition Workshops, CVPR 2009, pp. 30–37 (2009)
Latecki, L., Miezianko, R., Pokrajac, D.: Tracking motion objects in infrared videos. In: IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2005, pp. 99–104 (2005)
Wang, W., Zhang, J., Shen, C.: Improved human detection and classification in thermal images. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 2313–2316 (2010)
Doulamis, N.D.: Coupled multi-object tracking and labeling for vehicle trajectory estimation and matching. Multimedia Tools Appl. 50, 173–198 (2010)
Kosmopoulos, D.I., Doulamis, N.D., Voulodimos, A.S.: Bayesian filter based behavior recognition in workflows allowing for user feedback. Comput. Vis. Image Underst. 116, 422–434 (2012)
Voulodimos, A.S., Doulamis, N.D., Kosmopoulos, D.I., Varvarigou, T.A.: Improving multi-camera activity recognition by employing neural network based readjustment. Appl. Artif. Intell. 26, 97–118 (2012)
Brutzer, S., Hoferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1937–1944 (2011)
Herrero, S., Bescós, J.: Background subtraction techniques: systematic evaluation and comparative analysis. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 33–42. Springer, Heidelberg (2009)
El Baf, F., Bouwmans, T., Vachon, B.: Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009, pp. 60–65 (2009)
Zheng, J., Wang, Y., Nihan, N., Hallenbeck, M.: Extracting roadway background image: mode-based approach. Transp. Res. Rec. J. Transp. Res. Board 2006, 82–88 (1944)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19, 780–785 (1997)
Messelodi, S., Modena, C.M., Segata, N., Zanin, M.: A Kalman filter based background updating algorithm robust to sharp illumination changes. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 163–170. Springer, Heidelberg (2005)
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261 (1999)
Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, p. 252 (1999)
Makantasis, K., Doulamis, A., Matsatsinis, N.: Student-t background modeling for persons’ fall detection through visual cues. In: 2012 13th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), pp. 1–4 (2012)
Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31 (2004)
Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27, 773–780 (2006)
Davis, J., Sharma, V.: Fusion-based background-subtraction using contour saliency. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, CVPR Workshops 2005, pp. 11–11 (2005)
Davis, J.W., Sharma, V.: Background-subtraction in thermal imagery using contour saliency. Int. J. Comput. Vis. 71, 161–181 (2007)
Elguebaly, T., Bouguila, N.: Finite asymmetric generalized gaussian mixture models learning for infrared object detection. Comput. Vis. Image Underst. 117, 1659–1671 (2013)
Dai, C., Zheng, Y., Li, X.: Pedestrian detection and tracking in infrared imagery using shape and appearance. Comput. Vis. Image Underst. 106, 288–299 (2007)
Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York (2007)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Dasgupta, S., Hsu, D.: On-line estimation with the multivariate gaussian distribution. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 278–292. Springer, Heidelberg (2007)
Acknowledgements
This research was funded from European Unions FP7 under grant agreement n.313161, eVACUATE Project (www.evacuate.eu).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Makantasis, K., Doulamis, A., Loupos, K. (2015). Variational Inference for Background Subtraction in Infrared Imagery. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_62
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)