Abstract
We propose an unsupervised method for analyzing motion activities from videos. Our method combines Latent Dirichlet Allocation with Granger Causality to discover the main motions composing the activity as well as to detect how these motions relate to one another in time and space. We tested our method on synthetic and real-world datasets. Our method compares favorably with state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, J., Gong, S., Xiang, T.: Global behaviour inference using probabilistic latent semantic analysis. In: BMVC, vol. 3231, p. 3232 (2008)
Wang, X., Ma, X., Grimson, W.E.L.: Unsupervised activity perception in crowded and complicated scenes using hierarchical Bayesian models. IEEE Trans. Pattern Anal. Mach. Intell. 31(2009), 539–555 (2009)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Guo, S., Seth, A.K., Kendrick, K.M., Zhou, C., Feng, J.: Partial Granger causality - eliminating exogenous inputs and latent variables. J. Neurosci. Meth. 172, 79–93 (2008)
Saleemi, I., Shafique, K., Shah, M.: Probabilistic modeling of scene dynamics for applications in visual surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1472–1485 (2009)
Kuettel, D., Breitenstein, M.D., Van Gool, L., Ferrari, V.: What’s going on? discovering spatio-temporal dependencies in dynamic scenes. In: IEEE CVPR, pp. 1951–1958 (2010)
Griffiths, T.: Gibbs sampling in the generative model of latent Dirichlet allocation. 518(11), 1–3 (2002). Standford University
Wiener, N.: The theory of prediction. In: Modern Mathematics for the Engineer, pp. 165–190. McGraw-Hill, New York (1956)
Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soci. 33, 424–438 (1969)
Prabhakar, K., Oh, S., Wang, P., Abowd, G.D., Rehg, J.M.: Temporal causality for the analysis of visual events. In: IEEE CVPR, 1967–1974 (2010)
Fan, Y., Yang, H., Zheng, S., Su, H., Wu, S.: Video sensor-based complex scene analysis with Granger causality. Sensors 13, 13685–13707 (2013)
Hospedales, T., Gong, S., Xiang, T.: Video behaviour mining using a dynamic topic model. Int. J. Comput. Vis. 98, 303–323 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kular, D., Ribeiro, E. (2015). Analyzing Activities in Videos Using Latent Dirichlet Allocation and Granger Causality. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_58
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_58
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)