Skip to main content

Evaluation of Vision-Based Human Activity Recognition in Dense Trajectory Framework

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Activity recognition has been an active research topic in computer vision. Recently, the most successful approaches use dense trajectories that extract a large number of trajectories and features on the trajectories into a codeword. In this paper, we evaluate various features in the framework of dense trajectories on several types of datasets. We implement 13 features in total by including five different types of descriptor, namely motion-, shape-, texture- trajectory- and co-occurrence-based feature descriptors. The experimental results show a relationship between feature descriptors and performance rate at each dataset. Different scenes of traffic, surgery, daily living and sports are used to analyze the feature characteristics. Moreover, we test how much the performance rate of concatenated vectors depends on the type, top-ranked in experiment and all 13 feature descriptors on fine-grained datasets. Feature evaluation is beneficial not only in the activity recognition problem, but also in other domains in spatio-temporal recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Viola, P., Jones, M.: Rapid object detection using a boosted cascaded of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2001)

    Google Scholar 

  2. Moeslund, T.B., Hilton, A., Kruger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. (CVIU) 104, 90–126 (2006)

    Article  Google Scholar 

  3. Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43, 16 (2011)

    Article  Google Scholar 

  4. Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition to cite this version. In: British Machine Vision Conference (BMVC) (2009)

    Google Scholar 

  5. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. (IJCV) 64, 107–123 (2005)

    Article  Google Scholar 

  6. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: Visual Surveillance and Performance Evaluation of Tracking and Surveillance (PETS), pp. 65–72 (2005)

    Google Scholar 

  7. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Wang, H., Klaser, A., Schmid, C.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. (IJCV) 103, 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  9. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  10. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Reddy, K.K., Shah, M.: Recognizing 50 human action categories of web videos. Mach. Vis. Appl. (MVA) 24, 971–981 (2012)

    Article  Google Scholar 

  13. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  14. Jiang, Y.G., Liu, J., Roshan Zamir, A., Toderici, G., Laptev, I., Shah, M., Sukthankar, R.: THUMOS challenge: action recognition with a large number of classes (2014). http://crcv.ucf.edu/THUMOS14/

  15. Benenson, R., Omran, M., Hosang, J., Schiele, B.: Ten years of pedestrian detection, what have we learned? In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014 Workshops. LNCS, vol. 8926, pp. 613–627. Springer, Heidelberg (2015)

    Google Scholar 

  16. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  17. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1627–1645 (2010)

    Article  Google Scholar 

  18. Sermanet, P., Kavukcuoglu, K., Chintala, S., LeCun, Y.: Pedestrian detection with unsupervised multi-stage feature learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)

    Google Scholar 

  19. Huang, C.H., Boyer, E., Navab, N., Ilic, S.: Human shape and pose tracking using keyframes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  20. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  21. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  23. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2008)

    Google Scholar 

  24. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Kliper-Gross, O., Gurovich, Y., Hassner, T., Wolf, L.: Motion interchange patterns for action recognition in unconstrained videos. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 256–269. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Kobayashi, T., Otsu, N.: Image feature extraction using gradient local auto-correlations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 346–358. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    Article  Google Scholar 

  28. Mohamed, A.A., Yampolskily, R.V.: An improved lbp algorithm for avatar face recognition. In: International Symposium on Information, Communication and Automation Technologies (ICAT) (2011)

    Google Scholar 

  29. Yeffet, L., Wolf, L.: Local trinary patterns for human action recognition. In: International Conference on Computer Vision (ICCV) (2009)

    Google Scholar 

  30. Watanabe, T., Ito, S., Yokoi, K.: Co-occurrence histograms of oriented gradients for pedestrian detection. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 37–47. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Kataoka, H., Hashimoto, K., Iwata, K., Satoh, Y., Navab, N., Ilic, S., Aoki, Y.: Extended co-occurrence HOG with dense trajectories for fine-grained activity recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 336–349. Springer, Heidelberg (2015)

    Google Scholar 

  32. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: European Conference on Computer Vision Workshop (ECCVW) (2004)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Number 24300078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokatsu Kataoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kataoka, H., Aoki, Y., Iwata, K., Satoh, Y. (2015). Evaluation of Vision-Based Human Activity Recognition in Dense Trajectory Framework. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics