Abstract
This paper presents a new method for human activity recognition using depth sequences. Each depth sequence is represented by three depth motion maps (DMMs) from three projection views (front, side and top) to capture motion cues. A feature extraction method utilizing spatial and orientational auto-correlations of image local gradients is introduced to extract features from DMMs. The gradient local auto-correlations (GLAC) method employs second order statistics (i.e., auto-correlations) to capture richer information from images than the histogram-based methods (e.g., histogram of oriented gradients) which use first order statistics (i.e., histograms). Based on the extreme learning machine, a fusion framework that incorporates feature-level fusion into decision-level fusion is proposed to effectively combine the GLAC features from DMMs. Experiments on the MSRAction3D and MSRGesture3D datasets demonstrate the effectiveness of the proposed activity recognition algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, C., Jafari, R., Kehtarnavaz, N.: Improving human action recognition using fusion of depth camera and inertial sensors. IEEE Trans. Hum.-Mach. Syst. 45(1), 51–61 (2015)
Chen, C., Liu, K., Jafari, R., Kehtarnavaz, N.: Home-based senior fitness test measurement system using collaborative inertial and depth sensors. In: EMBC, pp. 4135–4138 (2014)
Theodoridis, T., Agapitos, A., Hu, H., Lucas, S.M.: Ubiquitous robotics in physical human action recognition: a comparison between dynamic ANNs and GP. In: ICRA, pp. 3064–3069 (2008)
Chen, C., Kehtarnavaz, N., Jafari, R.: A medication adherence monitoring system for pill bottles based on a wearable inertial sensor. In: EMBC, pp. 4983–4986 (2014)
Yang, X., Tian, Y.: Super normal vector for activity recognition using depth sequences. In: CVPR, pp. 804–811 (2014)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR, pp. 1297–1304 (2011)
Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: CVPRW, pp. 9–14 (2010)
Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based histograms of oriented gradients. In: ACM Multimedia, pp. 1057–1060 (2012)
Xia, L., Aggarwal, J.K.: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In: CVPR, pp. 2834–2841 (2013)
Yang, X., Tian, Y.: Effective 3d action recognition using eigenjoints. J. Vis. Commun. Image Represent. 25(1), 2–11 (2014)
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)
Chen, C., Liu, K., Kehtarnavaz, N.: Real-time human action recognition based on depth motion maps. J. Real-Time Image Process., 1–9 (2013). doi:10.1007/s11554-013-0370-1
Chen, C., Jafari, R., Kehtarnavaz, N.: Action recognition from depth sequences using depth motion maps-based local binary patterns. In: WACV, pp. 1092–1099 (2015)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: CVPR, pp. 588–595 (2014)
Kobayashi, T., Otsu, N.: Image feature extraction using gradient local auto-correlations. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 346–358. Springer, Heidelberg (2008)
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006)
Chen, C., Zhou, L., Guo, J., Li, W., Su, H., Guo, F.: Gabor-filtering-based completed local binary patterns for land-use scene classification. In: 2015 IEEE International Conference on Multimedia Big Data, pp. 324–329 (2015)
Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)
Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classifiers 10(3), 61–74 (1999)
Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture recognition with a depth sensor. In: EUSIPCO, pp. 1975–1979 (2012)
Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3D action recognition with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 872–885. Springer, Heidelberg (2012)
Vieira, A.W., Nascimento, E.R., Oliveira, G.L., Liu, Z., Campos, M.F.: STOP: space-time occupancy patterns for 3D action recognition from depth map sequences. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 252–259. Springer, Heidelberg (2012)
Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: CVPR, pp. 1290–1297 (2012)
Oreifej, O., Liu, Z.: HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences. In: CVPR, pp. 716–723 (2013)
Rahmani, H., Mahmood, A., Huynh, D.Q., Mian, A.: Real time action recognition using histograms of depth gradients and random decision forests. In: WACV, pp. 626–633 (2014)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)
Acknowledgement
We acknowledge the support of the Industry, Teaching and Research Prospective Project of Jiangsu Province (grant No. BY2015027-12), the Natural Science Foundation of China, under contracts 61063021, 61272052 and 61473086, and the Program for New Century Excellent Talents of the University of Ministry of Education of China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, C., Hou, Z., Zhang, B., Jiang, J., Yang, Y. (2015). Gradient Local Auto-Correlations and Extreme Learning Machine for Depth-Based Activity Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)