Skip to main content

A Hybrid Real-Time Visual Tracking Using Compressive RGB-D Features

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2834 Accesses

Abstract

The online multi-instance learning tracking (MIL) algorithm is known for its ability of alleviating tracking drift by training classifiers with positive and negative bag. However, the increased computational complexity results in time consuming due to the lack of consideration of sampling importance when collecting training samples. Additionally, the MIL method, as a 2D feature-based tracking algorithm, performs unsteadily when the object changes poses or rotates seriously. In this paper, a histogram-based feature similarity measurement is employed as a weighting strategy to select positive samples. Benefited from profitable depth information, the tracking algorithm we proposed achieves higher tracking performance. For computational efficiency, a compressive sensing method is adopted to extract features and reduce dimensionality. Experimental results demonstrate that our algorithm is better in robustness, accuracy, efficiency than three state-of-the-art methods on challenging video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 13 (2006)

    Article  Google Scholar 

  2. Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1631–1643 (2005)

    Article  Google Scholar 

  3. Grabner, H., Bischof, H.: On-line boosting and vision. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  4. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. BMVC 1, 6 (2006)

    Google Scholar 

  5. Avidan, S.: Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell.29, 261–271 (2007)

    Article  Google Scholar 

  6. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell.38, 1619–1632 (2011)

    Article  Google Scholar 

  7. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instances learning. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 983–990. IEEE (2009)

    Google Scholar 

  9. Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn. 46(January), 397–411 (2013)

    Article  MATH  Google Scholar 

  10. Zhang, K., Zhang, L., Yang, M.-H.: Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2002–2015 (2014)

    Article  Google Scholar 

  11. Guo, C.: Research on Online Video Object Tracking Algorithm in Presence of Its Zoom and Occlusions. Chongqing University, Chongqing (2014)

    Google Scholar 

  12. Smeaton, A.F., O’Connor, N.E.: An improved spatiogram similarity measure for robust object localization. In: Proceedings of ICASSP, pp. 1067–1072. IEEE, Honolulu (2007)

    Google Scholar 

  13. Candes, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theor. 51(12), 4203–4215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theor. 52(12), 5406–5425 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  16. Li, H., Shen, C., Shi, Q.: Real-time visual tracking using compressive sensing. In: CVPR, pp. 1305–1312 (2011)

    Google Scholar 

  17. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition viasparse representation. PAMI 31, 210–227 (2009)

    Article  Google Scholar 

  18. Liu, L., Fieguth, P.: Texture classic cation from random features. PAMI 34, 574–586 (2012)

    Article  Google Scholar 

  19. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: International Conference on Knowledge Discovery and Data Mining, pp. 245–250 (2001)

    Google Scholar 

  21. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28, 253–263 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66, 671–687 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, P., Hastie, T., Church, K.: Very sparse random projections. In: KDD, pp. 287–296 (2006)

    Google Scholar 

  24. Baraniuk, R.: Compressive sensing. IEEE Sig. Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  25. Wu, Y., Jia, N., Sun, J.: Real-time multi-scale tracking based on compressive sensing. Original Article 30(4) (2014)

    Google Scholar 

  26. Wu, Y., Lim, J., Yang, M.-H.: Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guotian He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, M., Luo, H., Tafti, A.P., Lin, Y., He, G. (2015). A Hybrid Real-Time Visual Tracking Using Compressive RGB-D Features. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics