Skip to main content

Visualization Techniques for the Developing Chicken Heart

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

We present a geometric surface parameterization algorithm and several visualization techniques adapted to the problem of understanding the 4D peristaltic-like motion of the outflow tract (OFT) in an embryonic chick heart. We illustrated the techniques using data from hearts under normal conditions (four embryos), and hearts in which blood flow conditions are altered through OFT banding (four embryos). The overall goal is to create quantitative measures of the temporal heart-shape change both within a single subject and between multiple subjects. These measures will help elucidate how altering hemodynamic conditions changes the shape and motion of the OFT walls, which in turn influence the stresses and strains on the developing heart, causing it to develop differently. We take advantage of the tubular shape and periodic motion of the OFT to produce successively lower dimensional visualizations and quantifications of the cardiac motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Datar, M., Cates, J., Fletcher, P.T., Gouttard, S., Gerig, G., Whitaker, R.: Particle based shape regression of open surfaces with applications to developmental neuroimaging. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 167–174. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. CGF 21(3), 209–218 (2002)

    Google Scholar 

  3. Drury, H.A., van Essen, D.C., Joshi, S.C., Miller, M.I.: Analysis and comparison of areal partitioning schemes using two-dimensional fluid deformations. NeuroImage 3, S130 (1996)

    Article  Google Scholar 

  4. Drury, H., Van Essen, D.: Functional specializations in human cerebral cortex analyzed using the visible man surface-based atlas. Hum. Brain Mapp. 5(4), 233–237 (1997)

    Article  Google Scholar 

  5. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: SIGGRAPH 1995. pp. 173–182. ACM, New York, NY, USA (1995)

    Google Scholar 

  6. Essen, D.C.V., Drury, H.A., Dickson, J., Harwell, J., Hanlon, D., Anderson, C.H.: An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8(5), 443–459 (2001)

    Article  Google Scholar 

  7. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–284 (1999)

    Article  Google Scholar 

  8. Garita, B., Jenkins, M.W., Han, M., Zhou, C., Vanauker, M., Rollins, A.M., Watanabe, M., Fujimoto, J.G., Linask, K.K.: Blood flow dynamics of one cardiac cycle and relationship to mechanotransduction and trabeculation during heart looping. Am. J. Physiol. Heart Circulatory physiol. 300(3), H879–H891 (2011)

    Article  Google Scholar 

  9. Goodwin, R.L., Biechler, S.V., Junor, L., Evans, A.N., Eberth, J.F., Price, R.L., Potts, J.D., Yost, M.J.: The impact of flow-induced forces on the morphogenesis of the outflow tract. Front. Physiol. 5(225), 1–9 (2014)

    Google Scholar 

  10. Hamburger, V., Hamilton, H.L.: A series of normal stages in the development of the chick embryo. J. Morphol. 88(1), 49–92 (1951)

    Article  Google Scholar 

  11. Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.: Conformal virtual colon flattening. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, SPM 2006, pp. 85–93. ACM, New York, NY, USA (2006)

    Google Scholar 

  12. Hormann, K., Polthier, K., Sheffer, A.: Mesh parameterization: theory and practice. In: ACM SIGGRAPH ASIA 2008 courses, pp. 47:1–47:87. SIGGRAPH Asia 2008 (2008)

    Google Scholar 

  13. Hove, J.R., Koster, R.W., Forouhar, A.S., Acevedo-Bolton, G., Fraser, S.E., Gharib, M.: Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–7 (2003)

    Article  Google Scholar 

  14. Huang, Q.X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. In: SGP, pp. 1449–1457. Eurographics Association (2008)

    Google Scholar 

  15. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Proceedings of Eurographics State-of-the-art Report, pp. 1–22 (2010)

    Google Scholar 

  16. Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape analysis of spherically-parameterized surfaces. CGF 32(2.4), 429–438 (2013)

    Google Scholar 

  17. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM TOG 21, 362–371 (2002)

    Article  Google Scholar 

  18. Liu, A., Wang, R., Thornburg, K.L., Rugonyi, S.: Efficient postacquisition synchronization of 4-d nongated cardiac images obtained from optical coherence tomography: application to 4-d reconstruction of the chick embryonic heart. J. Biomed. Opt. 14(4), 044020 (2009)

    Article  Google Scholar 

  19. Liu, A., Yin, X., Shi, L., Li, P., Thornburg, K.L., Wang, R., Rugonyi, S.: Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS ONE 7(7), e40869 (2012)

    Article  Google Scholar 

  20. Martinsen, B.J.: Reference guide to the stages of chick heart embryology. Dev. Dyn. 233(4), 1217–1237 (2005)

    Article  Google Scholar 

  21. Midgett, M., Rugonyi, S.: Congenital heart malformations induced by hemodynamic altering surgical interventions. Front. Physiol. 5, 287 (2014)

    Article  Google Scholar 

  22. Phan, L., Knutsen, A.K., Bayly, P.V., Rugonyi, S., Grimm, C.: Refining shape correspondence for similar objects using strain. In: EG 3D OR, pp. 17–24. Eurographics Association (2011)

    Google Scholar 

  23. Rothenberg, F., Fisher, S.A., Watanabe, M.: Sculpting the cardiac outflow tract. Birth Defects Res. C 69(1), 38–45 (2003)

    Article  Google Scholar 

  24. Sedmera, D., Pexieder, T., Rychterova, V., Hu, N., Clark, E.B.: Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat. Rec. 254(2), 238–252 (1999)

    Article  Google Scholar 

  25. Thompson, P., Mega, M., Woods, R., Blanton, R., Moussai, J., Zoumalan, C., Aron, J., Cummings, J., Toga, A.: A probabilistic atlas of the human brain in alzheimer’s disease: emerging patterns of variability, asymmetry and degeneration. NeuroImage 9, S597 (1999)

    Google Scholar 

  26. Tobita, K., Garrison, J.B., Liu, L.J., Tinney, J.P., Keller, B.B.: Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol. 283A(1), 193–201 (2005)

    Article  Google Scholar 

  27. Yin, X., Liu, A., Thornburg, K.L., Wang, R.K., Rugonyi, S.: Extracting cardiac shapes and motion of the chick embryo heart outflow tract from four-dimensional optical coherence tomography images. J. Biomed. Opt. 17(9), 1–10 (2012)

    Article  Google Scholar 

  28. Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., Tagliasacchi, A.: Deformation-driven shape correspondence. In: SGP, pp. 1431–1439. Eurographics Association (2008)

    Google Scholar 

  29. Zhao, J., Cao, L., Zhuang, T., Wang, G.: Digital eversion of a hollow structure: an application in virtual colonography. J. Biomed. Imag. 2008, 1–6 (2008)

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded in part by NSF grants DBI-1052688 and IIS-1302142 and NIH grant R01-HL094570.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Phan, L., Grimm, C., Rugonyi, S. (2015). Visualization Techniques for the Developing Chicken Heart. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics