Skip to main content

More Usable V-EGI for Volumetric Dataset Registration

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2775 Accesses

Abstract

Enhancements to the Volume-based Extended Gaussian Image (V-EGI) registration are described. The first enhancement is the capability to recover positional difference (in additional to rotational difference) between volumetric datasets. The second, and most important, enhancement uses a multi-stage coarse-to-fine processing strategy to improve computational speed. That enhancement also incorporates an optimization scheme to enable the strategy to maintain accuracy. The third enhancement is a methodology that achieves a moderate degree of parallelism on current-generation multi-core CPUs. Results of application of these methodologies to multiple datassets are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zitova, B., Flussser, J.: Image registration methods: a survey. Image Vis. Comput. 21, 977–1000 (2003)

    Article  Google Scholar 

  2. Horn, B.: Extended gaussian images. Proc. IEEE 72, 1671–1686 (1984)

    Article  Google Scholar 

  3. Dong, C., Newman, T.S.: A volumetric spin-off EGI for registration of volume datasets. In: First Asian Conference on Pattern Recognition (ACPR), Beijing, pp. 470–475 (2012)

    Google Scholar 

  4. Oliveira, F., Tavares, J.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Eng. 17, 73–93 (2014)

    Article  Google Scholar 

  5. Alves, R.S., Tavares, J.M.R.S.: Computer image registration techniques applied to nuclear medicine images. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds.) Computational and Experimental Biomedical Science: Methods and Applications; LNCVB. LNCVB, vol. 21, pp. 173–191. Springer, Heidelberg (2015)

    Google Scholar 

  6. Tavares, J.M.R.S.: Analysis of biomedical images based on automated methods of image registration. In: Bebis, G., et al. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 21–30. Springer, Heidelberg (2014)

    Google Scholar 

  7. Pan, G., Wang, Y., Qi, Y., Wu, Z.H.: Finding symmetry plane of 3D face shape. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPR06), pp. 1143–1146 (2006)

    Google Scholar 

  8. Ikeuchi, K.: Recognition of 3-D objects using the extended gaussian image. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, pp. 595–600 (1981)

    Google Scholar 

  9. Chibunichev, A.G., Velizhev, A.B.: Automatic matching of terrestrial scan data using orientation histogram. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, Beijing, pp. 601–604 (2008)

    Google Scholar 

  10. Dold, C.: Extented gaussian images for the registration of terrestrial scan data. In: Proceedings of ISPRS WG III/3, III/4, V/3 Workshop on Laser Scanning, Enschede, Netherlands, pp. 180–185 (2005)

    Google Scholar 

  11. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16, 187–198 (1997)

    Article  Google Scholar 

  12. Guillaume, H., Dillenseger, J.L., Patard, J.J.: Intra subject 3D/3D kidney registration/modeling using spherical harmonics applied on partial information. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  13. Ni, D., Chui, Y.P., Qu, Y., Yang, X., Qin, J., Wong, T.T., Ho, S.S.H., Heng, P.A.: Reconstruction of volumetric ultrasound panorama based on improved 3D sift. Comput. Med. Imaging Graph. 33, 559–566 (2009)

    Article  Google Scholar 

  14. Papazov, C., Burschka, D.: Stochastic global optimization for robust point set registration. Comp. Vis. Image Underst. 115, 1598–1609 (2011)

    Article  Google Scholar 

  15. Shams, R., Sadeghi, P., Kennedy, R.A., Hartley, R.I.: A survey of medical image registration on multicore and the GPU. IEEE Signal Proc. Mag. 27, 50–60 (2010)

    Article  Google Scholar 

  16. Shams, R., Sadeghi, P., Kennedy, R., Hartley, R.: Parallel computation of mutual information on the GPU with application to real-time registation of 3D medical images. Comput, Methods Progr. Biomed. 99, 133–146 (2010)

    Article  Google Scholar 

  17. Tait, R.J., Schaefer, G., Hopgood, A.A., Nakeshima, T.: High performance medical image registration using a distributed blackboard architecture. In: Proceedings of 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing, Hawaii, pp. 252–257 (2007)

    Google Scholar 

  18. Press, W.H., Flannery, B., Teukolsky, S., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1988)

    MATH  Google Scholar 

  19. U.S. National Library of Medicines. https://www.nlm.nih.gov/research/visible/animations.html. Accessed August 2015

  20. Roettger, S.: The Volume Library. http://www9.informatik.uni-erlangen.de/External/vollib/. Accessed August 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dong, C., Newman, T.S. (2015). More Usable V-EGI for Volumetric Dataset Registration. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics