Abstract
This paper proposes a novel automatic method to segment extraocular muscles and orbital structures. Instead of conventional segmentation at the pixel level, superpixels at the structure level were used as the basic image processing unit. A region adjacency graph was built based on the neighborhood relationship among superpixels. Using Normalized Cuts on the region adjacency graph, we refined the segmentation by using a variety of features derived from the classical shape cues, including contours and continuity. To demonstrate the efficiency of the method, segmentation of Magnetic Resonance images of five healthy subjects was performed and analyzed. Three region-based image segmentation evaluation metrics were applied to quantify the automatic segmentation accuracy against manual segmentation. Our novel method could produce accurate and reproducible eye muscle segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bijlsma, W.R., Mourits, M.P.: Radiologic measurement of extraocular muscle volumes in patients with Graves’ orbitopathy: a review and guideline. Orbit 25, 83–91 (2006)
Ben Simon, G.J., Syed, H.M., Douglas, R., McCann, J.D., Goldberg, R.A.: Extraocular muscle enlargement with tendon involvement in thyroid-associated orbitopathy. Am. J. Ophthalmol. 137, 1145–1147 (2004)
Dal Canto, A.J., Crowe, S., Perry, J.D., Traboulsi, E.I.: Intraoperative relaxed muscle positioning technique for strabismus repair in thyroid eye disease. Ophthalmology 113, 2324–2330 (2006)
Gupta, A., Sadeghi, P.B., Akpek, E.K.: Occult thyroid eye disease in patients presenting with dry eye symptoms. Am. J. Ophthalmol. 147, 919–923 (2009)
Kono, R., Poukens, V., Demer, J.L.: Quantitative analysis of the structure of the human extraocular muscle pulley system. Invest. Ophth. Vis. Sci. 43, 2923–2932 (2002)
Chaudhuri, Z., Demer, J.L.: Sagging eye syndrome: connective tissue involution as a cause of horizontal and vertical strabismus in older patients. JAMA Ophthalmol. 131, 619–625 (2013)
Firbank, M.J., Coulthard, A.: Evaluation of a technique for estimation of extraocular muscle volume using 2D MRI. Brit. J. Radiol. 73, 1282–1289 (2000)
Firbank, M.J., Harrison, R.M., Williams, E.D., Coulthard, A.: Measuring extraocular muscle volume using dynamic contours. Magn. Reson. Imaging 19, 257–265 (2001)
Souza, A.D.A., Ruiz, E.E.S., Cruz, A.A.V.: Extraocular muscle quantification using mathematical morphology: a semi-automatic method for analyzing muscle enlargement in orbital diseases. Comput. Med. Imag. Grap. 31, 39–45 (2007)
Szucs-Farkas, Z., Toth, J., Balazs, E., Galuska, L., Burman, K.D., Karanyi, Z., Leovey, A., Nagy, E.V.: Using morphologic parameters of extraocular muscles for diagnosis and follow-up of Graves’ ophthalmopathy: diameters, areas, or volumes? Am. J. Roentgenol. 179, 1005–1010 (2002)
Lv, B., Wu, T.N., Lu, K., Xie, Y.: Automatic segmentation of extraocular muscle using level sets methods with shape prior. In: Long, M. (ed.) IFMBE Proceedings. IFMBE, vol. 39, pp. 904–907. Springer, Heidelberg (2012)
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE T. Pattern Anal. 34, 2274–2282 (2012)
Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV, pp. 10–17 (2003)
Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: ICCV, pp. 670–677 (2009)
Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal contour closure by superpixel grouping. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 480–493. Springer, Heidelberg (2010)
Chan, T., Vese, L.: Active contours without edges. IEEE T. Image Process. 10, 266–277 (2001)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1, 321–331 (1988)
Souza, A., Ruiz, E.: Fast and accurate detection of extraocular muscle borders using mathematical morphology. In: IEMBS, pp. 1779–1782 (2000)
Wei, Q., Sueda, S., Miller, J., Demer, J., Pai, D.: Template-based reconstruction of human extraocular muscles from magnetic resonance images. In: ISBI, pp. 105–108 (2009)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 167–181 (2004)
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)
Conrad, C., Mertz, M., Mester, R.: Contour-relaxed superpixels. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 280–293. Springer, Heidelberg (2013)
Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. Int. J. Comput. Vision 80, 300–316 (2008)
Tremeau, A., Colantoni, P.: Regions adjacency graph applied to color image segmentation. IEEE T. Image Process. 9, 735–744 (2000)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE T. Pattern Anal. 22, 888–905 (2000)
Sharifi, M., Fathy, M., Tayefeh Mahmoudi, M.: A classified and comparative study of edge detection algorithms. In: ITCC, pp. 117–120 (2002)
Thorndike, R.L.: Who belongs in the family? Psychometrika 18, 267–276 (1953)
Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc. B Met. 63, 411–423 (2001)
Meila, M.: Comparing clusterings: an axiomatic view. In: ICML, pp. 577–584, New York (2005)
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)
Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: BMVC, pp. 1–10 (2007)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE T. Pattern Anal. 33, 898–916 (2011)
Acknowledgments
Supported by the Jeffress Trust Awards, NIH grant EY08313 and an unrestricted grant from Research to Prevent Blindness.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Xing, Q., Li, Y., Wiggins, B., Demer, J.L., Wei, Q. (2015). Automatic Segmentation of Extraocular Muscles Using Superpixel and Normalized Cuts. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)