Skip to main content

Automatic Segmentation of Extraocular Muscles Using Superpixel and Normalized Cuts

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

This paper proposes a novel automatic method to segment extraocular muscles and orbital structures. Instead of conventional segmentation at the pixel level, superpixels at the structure level were used as the basic image processing unit. A region adjacency graph was built based on the neighborhood relationship among superpixels. Using Normalized Cuts on the region adjacency graph, we refined the segmentation by using a variety of features derived from the classical shape cues, including contours and continuity. To demonstrate the efficiency of the method, segmentation of Magnetic Resonance images of five healthy subjects was performed and analyzed. Three region-based image segmentation evaluation metrics were applied to quantify the automatic segmentation accuracy against manual segmentation. Our novel method could produce accurate and reproducible eye muscle segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bijlsma, W.R., Mourits, M.P.: Radiologic measurement of extraocular muscle volumes in patients with Graves’ orbitopathy: a review and guideline. Orbit 25, 83–91 (2006)

    Article  Google Scholar 

  2. Ben Simon, G.J., Syed, H.M., Douglas, R., McCann, J.D., Goldberg, R.A.: Extraocular muscle enlargement with tendon involvement in thyroid-associated orbitopathy. Am. J. Ophthalmol. 137, 1145–1147 (2004)

    Article  Google Scholar 

  3. Dal Canto, A.J., Crowe, S., Perry, J.D., Traboulsi, E.I.: Intraoperative relaxed muscle positioning technique for strabismus repair in thyroid eye disease. Ophthalmology 113, 2324–2330 (2006)

    Article  Google Scholar 

  4. Gupta, A., Sadeghi, P.B., Akpek, E.K.: Occult thyroid eye disease in patients presenting with dry eye symptoms. Am. J. Ophthalmol. 147, 919–923 (2009)

    Article  Google Scholar 

  5. Kono, R., Poukens, V., Demer, J.L.: Quantitative analysis of the structure of the human extraocular muscle pulley system. Invest. Ophth. Vis. Sci. 43, 2923–2932 (2002)

    Google Scholar 

  6. Chaudhuri, Z., Demer, J.L.: Sagging eye syndrome: connective tissue involution as a cause of horizontal and vertical strabismus in older patients. JAMA Ophthalmol. 131, 619–625 (2013)

    Article  Google Scholar 

  7. Firbank, M.J., Coulthard, A.: Evaluation of a technique for estimation of extraocular muscle volume using 2D MRI. Brit. J. Radiol. 73, 1282–1289 (2000)

    Article  Google Scholar 

  8. Firbank, M.J., Harrison, R.M., Williams, E.D., Coulthard, A.: Measuring extraocular muscle volume using dynamic contours. Magn. Reson. Imaging 19, 257–265 (2001)

    Article  Google Scholar 

  9. Souza, A.D.A., Ruiz, E.E.S., Cruz, A.A.V.: Extraocular muscle quantification using mathematical morphology: a semi-automatic method for analyzing muscle enlargement in orbital diseases. Comput. Med. Imag. Grap. 31, 39–45 (2007)

    Article  Google Scholar 

  10. Szucs-Farkas, Z., Toth, J., Balazs, E., Galuska, L., Burman, K.D., Karanyi, Z., Leovey, A., Nagy, E.V.: Using morphologic parameters of extraocular muscles for diagnosis and follow-up of Graves’ ophthalmopathy: diameters, areas, or volumes? Am. J. Roentgenol. 179, 1005–1010 (2002)

    Article  Google Scholar 

  11. Lv, B., Wu, T.N., Lu, K., Xie, Y.: Automatic segmentation of extraocular muscle using level sets methods with shape prior. In: Long, M. (ed.) IFMBE Proceedings. IFMBE, vol. 39, pp. 904–907. Springer, Heidelberg (2012)

    Google Scholar 

  12. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE T. Pattern Anal. 34, 2274–2282 (2012)

    Article  Google Scholar 

  13. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV, pp. 10–17 (2003)

    Google Scholar 

  14. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: ICCV, pp. 670–677 (2009)

    Google Scholar 

  15. Levinshtein, A., Sminchisescu, C., Dickinson, S.: Optimal contour closure by superpixel grouping. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 480–493. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Chan, T., Vese, L.: Active contours without edges. IEEE T. Image Process. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  17. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vision 1, 321–331 (1988)

    Article  Google Scholar 

  18. Souza, A., Ruiz, E.: Fast and accurate detection of extraocular muscle borders using mathematical morphology. In: IEMBS, pp. 1779–1782 (2000)

    Google Scholar 

  19. Wei, Q., Sueda, S., Miller, J., Demer, J., Pai, D.: Template-based reconstruction of human extraocular muscles from magnetic resonance images. In: ISBI, pp. 105–108 (2009)

    Google Scholar 

  20. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 167–181 (2004)

    Article  Google Scholar 

  21. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Conrad, C., Mertz, M., Mester, R.: Contour-relaxed superpixels. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 280–293. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. Int. J. Comput. Vision 80, 300–316 (2008)

    Article  Google Scholar 

  24. Tremeau, A., Colantoni, P.: Regions adjacency graph applied to color image segmentation. IEEE T. Image Process. 9, 735–744 (2000)

    Article  Google Scholar 

  25. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE T. Pattern Anal. 22, 888–905 (2000)

    Article  Google Scholar 

  26. Sharifi, M., Fathy, M., Tayefeh Mahmoudi, M.: A classified and comparative study of edge detection algorithms. In: ITCC, pp. 117–120 (2002)

    Google Scholar 

  27. Thorndike, R.L.: Who belongs in the family? Psychometrika 18, 267–276 (1953)

    Article  Google Scholar 

  28. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. Roy. Stat. Soc. B Met. 63, 411–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Meila, M.: Comparing clusterings: an axiomatic view. In: ICML, pp. 577–584, New York (2005)

    Google Scholar 

  30. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  31. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: BMVC, pp. 1–10 (2007)

    Google Scholar 

  32. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE T. Pattern Anal. 33, 898–916 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Jeffress Trust Awards, NIH grant EY08313 and an unrestricted grant from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xing, Q., Li, Y., Wiggins, B., Demer, J.L., Wei, Q. (2015). Automatic Segmentation of Extraocular Muscles Using Superpixel and Normalized Cuts. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics