Abstract
Most of the tasks derived from shape analysis rely on the problem of finding meaningful correspondences between two or more shapes. In medical imaging analysis, this problem is a challenging topic due to the need to establish matching features in a given registration process. Besides, a similarity measure between shapes must be computed in order to obtain these correspondences. In this paper, we propose a method for 3D shape correspondences based on groupwise analysis using probabilistic latent variable models. The proposed method finds groupwise correspondences, and can handle multiple shapes with different number of objects (vertex or descriptors for every shape). By assigning a latent vector for each shape descriptor, we can cluster objects in different shapes, and find correspondences between clusters. We use a Dirichlet process prior in order to infer the number of clusters and find groupwise correspondences in an unsupervised manner. The results show that the proposed method can efficiently establish meaningful correspondences without using similarity measures between shapes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This database is available on http://www.spl.harvard.edu/publications/item/view/1265.
- 2.
We use the fast-marching toolbox developed by Gabriel Peyre and available on https://github.com/gpeyre/matlab-toolboxes/tree/master/toolbox_fast_marching.
References
Lin, D., Calhoun, V.D., Wang, Y.: Correspondence between fmri and SNP data by group sparse canonical correlation analysis. Med. Image Anal. 18, 891–902 (2014)
Lipman, Y., Funkhouser, T.: Mobius voting for surface correspondence. In: ACM SIGGRAPH 2009 Papers, pp. 72:1–72:12. ACM, New York(2009)
Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30, 1:1–1:20 (2011)
Liang, L., Szymczak, A., Wei, M.: Geodesic spin contour for partial near-isometric matching. Comput. Graph. 46, 156–171 (2015)
Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust surface registration. ACM Trans. Graph. 27(85), 1–10 (2008)
Brunton, A., Salazar, A., Bolkart, T., Wuhrer, S.: Review of statistical shape spaces for 3d data with comparative analysis for human faces. Comput. Vis. Image Underst. 128, 1–17 (2014)
Hill, D.: Neuroimaging to assess safety and efficacy of ad therapies. Expert Opin. Investig. Drugs 19, 23–26 (2010)
Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed. 104, e158–e177 (2011)
Sidorov, K.A., Richmond, S., Marshall, D.: Efficient groupwise non-rigid registration of textured surfaces. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 2401–2408. IEEE Computer Society, Washington, DC (2011)
Yang, X., Qiao, H., Liu, Z.Y.: Partial correspondence based on subgraph matching. Neurocomputing 122, 193–197 (2013). Advances in cognitive and ubiquitous computingSelected papers from the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2012)
Yamada, M., Sugiyama, M.: Cross-domain object matching with model selection. In: Gordon, G.J., Dunson, D.B. (eds.) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011), Journal of Machine Learning Research - Workshop and Conference Proceedings, vol. 15, pp. 807–815 (2011)
Klami, A.: Variational bayesian matching. In: Proceedings of the 4th Asian Conference on Machine Learning, ACML 2012, Singapore, pp. 205–220, 4–6 November 2012
Quadrianto, N., Song, L., Smola, A.J.: Kernelized sorting. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., eds.: Advances in Neural Information Processing Systems 21, pp. 1289–1296. Curran Associates, Inc. (2009)
van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum (Proc. Eurographics) 30, 553–562 (2011)
Iwata, T., Hirao, T., Ueda, N.: Unsupervised cluster matching via probabilistic latent variable models. In: desJardins, M., Littman, M.L. (eds.) AAAI. AAAI Press (2013)
Bronstein, M.M., Kokkinos, I.: Scale-invariant kernel signatures for non-rigid shape recognition. In: Proceedings of CVPR (2010)
Acknowledgments
This research is developed under the project: Estimación de los parámetros de neuromodulación con terapia de estimulación cerebral profunda, en pacientes con enfermedad de Parkinson a partir del volumen de tejido activo planeado, financed by Colciencias with code \(1110-657-40687\). H.F. García is funded by Colciencias under the program: formación de alto nivel para la ciencia, la tecnología y la innovación - Convocatoria 617 de 2013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
García, H.F., Álvarez, M.A., Orozco, Á. (2015). Groupwise Shape Correspondences on 3D Brain Structures Using Probabilistic Latent Variable Models. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)