Skip to main content

Groupwise Shape Correspondences on 3D Brain Structures Using Probabilistic Latent Variable Models

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2818 Accesses

Abstract

Most of the tasks derived from shape analysis rely on the problem of finding meaningful correspondences between two or more shapes. In medical imaging analysis, this problem is a challenging topic due to the need to establish matching features in a given registration process. Besides, a similarity measure between shapes must be computed in order to obtain these correspondences. In this paper, we propose a method for 3D shape correspondences based on groupwise analysis using probabilistic latent variable models. The proposed method finds groupwise correspondences, and can handle multiple shapes with different number of objects (vertex or descriptors for every shape). By assigning a latent vector for each shape descriptor, we can cluster objects in different shapes, and find correspondences between clusters. We use a Dirichlet process prior in order to infer the number of clusters and find groupwise correspondences in an unsupervised manner. The results show that the proposed method can efficiently establish meaningful correspondences without using similarity measures between shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This database is available on http://www.spl.harvard.edu/publications/item/view/1265.

  2. 2.

    We use the fast-marching toolbox developed by Gabriel Peyre and available on https://github.com/gpeyre/matlab-toolboxes/tree/master/toolbox_fast_marching.

References

  1. Lin, D., Calhoun, V.D., Wang, Y.: Correspondence between fmri and SNP data by group sparse canonical correlation analysis. Med. Image Anal. 18, 891–902 (2014)

    Article  Google Scholar 

  2. Lipman, Y., Funkhouser, T.: Mobius voting for surface correspondence. In: ACM SIGGRAPH 2009 Papers, pp. 72:1–72:12. ACM, New York(2009)

    Google Scholar 

  3. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30, 1:1–1:20 (2011)

    Article  Google Scholar 

  4. Liang, L., Szymczak, A., Wei, M.: Geodesic spin contour for partial near-isometric matching. Comput. Graph. 46, 156–171 (2015)

    Article  Google Scholar 

  5. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust surface registration. ACM Trans. Graph. 27(85), 1–10 (2008)

    Article  Google Scholar 

  6. Brunton, A., Salazar, A., Bolkart, T., Wuhrer, S.: Review of statistical shape spaces for 3d data with comparative analysis for human faces. Comput. Vis. Image Underst. 128, 1–17 (2014)

    Article  Google Scholar 

  7. Hill, D.: Neuroimaging to assess safety and efficacy of ad therapies. Expert Opin. Investig. Drugs 19, 23–26 (2010)

    Article  Google Scholar 

  8. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Programs Biomed. 104, e158–e177 (2011)

    Article  Google Scholar 

  9. Sidorov, K.A., Richmond, S., Marshall, D.: Efficient groupwise non-rigid registration of textured surfaces. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 2401–2408. IEEE Computer Society, Washington, DC (2011)

    Google Scholar 

  10. Yang, X., Qiao, H., Liu, Z.Y.: Partial correspondence based on subgraph matching. Neurocomputing 122, 193–197 (2013). Advances in cognitive and ubiquitous computingSelected papers from the Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2012)

    Article  Google Scholar 

  11. Yamada, M., Sugiyama, M.: Cross-domain object matching with model selection. In: Gordon, G.J., Dunson, D.B. (eds.) Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2011), Journal of Machine Learning Research - Workshop and Conference Proceedings, vol. 15, pp. 807–815 (2011)

    Google Scholar 

  12. Klami, A.: Variational bayesian matching. In: Proceedings of the 4th Asian Conference on Machine Learning, ACML 2012, Singapore, pp. 205–220, 4–6 November 2012

    Google Scholar 

  13. Quadrianto, N., Song, L., Smola, A.J.: Kernelized sorting. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., eds.: Advances in Neural Information Processing Systems 21, pp. 1289–1296. Curran Associates, Inc. (2009)

    Google Scholar 

  14. van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., Hamarneh, G.: Prior knowledge for part correspondence. Comput. Graph. Forum (Proc. Eurographics) 30, 553–562 (2011)

    Article  Google Scholar 

  15. Iwata, T., Hirao, T., Ueda, N.: Unsupervised cluster matching via probabilistic latent variable models. In: desJardins, M., Littman, M.L. (eds.) AAAI. AAAI Press (2013)

    Google Scholar 

  16. Bronstein, M.M., Kokkinos, I.: Scale-invariant kernel signatures for non-rigid shape recognition. In: Proceedings of CVPR (2010)

    Google Scholar 

Download references

Acknowledgments

This research is developed under the project: Estimación de los parámetros de neuromodulación con terapia de estimulación cerebral profunda, en pacientes con enfermedad de Parkinson a partir del volumen de tejido activo planeado, financed by Colciencias with code \(1110-657-40687\). H.F. García is funded by Colciencias under the program: formación de alto nivel para la ciencia, la tecnología y la innovación - Convocatoria 617 de 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán F. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

García, H.F., Álvarez, M.A., Orozco, Á. (2015). Groupwise Shape Correspondences on 3D Brain Structures Using Probabilistic Latent Variable Models. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics