Abstract
In this paper, the use of three dense descriptors, namely Schmid, Gabor and steerable descriptors, is introduced and investigated for optical flow estimation and dense correspondence of different scenes and compared with the well-known dense SIFT/SIFTFlow. Several examples of optical flow estimation and dense correspondence across scenes with high variations in the intensity levels, difference in the presence of features and different misalignment models (rigid, deformable, homography etc.) are studied and the results are quantitatively/qualitatively compared with dense SIFT/SIFTFlow. The proposed dense descriptors provide comparable or better results than dense SIFT/SIFTFlow which shows the high potential in this area for more thorough investigations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The first author’s village in central part of Iran.
References
Baghaie, A., Yu, Z.: Curvature-based registration for slice interpolation of medical images. In: Zhang, Y.J., Tavares, J.M.R.S. (eds.) CompIMAGE 2014. LNCS, vol. 8641, pp. 69–80. Springer, Heidelberg (2014)
Baghaie, A., D’souza, R.M., Yu, Z.: Sparse And Low Rank Decomposition Based Batch Image Alignment for Speckle Reduction of retinal OCT Images (2014). arXiv preprint arXiv:1411.4033
Baghaie, A., Yu, Z., D’souza, R.M.: State-of-the-art in retinal optical coherence tomography image analysis. Quant. Imaging Med. Surg. 5(4), 603–617 (2015). doi:10.3978/j.issn.2223-4292.2015.04.08
Baghaie, A., D’souza, R.M., Yu, Z.: Application of Independent Component Analysis Techniques in Speckle Noise Reduction of Single-Shot Retinal OCT Images (2015). arXiv preprint arXiv:1502.05742
Lillesand, T., Kiefer, R.W.: Remote Sensing and Image Interpretation. Wiley, New York (2014)
Li, Q., Wang, G., Liu, J., Chen, S.: Robust scale-invariant feature matching for remote sensing image registration. IEEE Geosci. Remote Sens. Lett. 6(2), 287–291 (2009)
Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)
Baghaie, A., Yu, Z., D’souza, R.M.: Fast mesh-based medical image registration. In: Bebis, G., et al. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 1–10. Springer, Heidelberg (2014)
Tafti, A.P., Hassannia, H., Yu, Z.: siftservice.com-Turning a Computer Vision algorithm into a World Wide Web Service (2015). arXiv preprint arXiv:1504.02840
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Tafti, A.P., Kirkpatrick, A.B., Alavi, Z., Owen, H.A., Zeyun, Y.: Recent advances in 3D SEM surface reconstruction. Micron 78, 54–66 (2015)
Tafti, A.P., Kirkpatrick, A.B., Owen, H.A., Yu, Z.: 3D microscopy vision using multiple view geometry and differential evolutionary approaches. In: Bebis, G., et al. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 141–152. Springer, Heidelberg (2014)
Tafti, A.P., Baghaie, A., Kirkpatrick, A.B., Owen, H.A., D’Souza, R.M., Yu, Z.: A Comparative study on the application of SIFT, SURF, BRIEF and ORB for 3D surface reconstruction of electron microscopy images. In: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization (2016)
Johnson, A.E., Hebert, M.: Recognizing objects by matching oriented points. In: 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings. IEEE (1997)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Wang, H., Klser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2011)
Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)
Sangineto, E.: Pose and expression independent facial landmark localization using dense-SURF and the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 624–638 (2013)
Dalal, N.,Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1. IEEE (2005)
Gabor, D.: Theory of communication. part 1: the analysis of information. J. Inst. Electr. Eng. III. Radio Commun. Eng. 93(26), 429–441 (1946)
Movellan, J.R.: Tutorial on Gabor filters. Open Source Document (2002)
Ilonen, J., Kmrinen, J.-K., Kllvinen, H.: Efficient computation of Gabor features. Lappeenranta University of Technology, Lappeenranta (2005)
Schmid, C.: Constructing models for content-based image retrieval. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2. IEEE (2001)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 9, 891–906 (1991)
Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1007–1019 (2004)
Aguet, F., Jacob, M., Unser, M.: Three-dimensional feature detection using optimal steerable filters. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 2. IEEE (2005)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Intern. J. Comput. Vis. 60(2), 91–110 (2004)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)
Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (2014)
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Intern. J. Comput. Vis. 92(1), 1–31 (2011)
Malin, M.C., Edgett, K.S., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., McEwen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A., Warren, J.L.: New Gully Deposit in a Crater in Terra Sirenum: Evidence That Water Flowed on Mars in This Decade? In: NASA’s Planetary Photojournal, MOC2-1618, 6 December 2006. http://photojournal.jpl.nasa.gov/
Yang, G., Stewart, C.V., Sofka, M., Tsai, C.-L.: Registration of challenging image pairs: initialization, estimation, and decision. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Baghaie, A., D’Souza, R.M., Yu, Z. (2015). Dense Correspondence and Optical Flow Estimation Using Gabor, Schmid and Steerable Descriptors. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)