Skip to main content

Fuzzy Skeletonization Improves the Performance of Characterizing Trabecular Bone Micro-architecture

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2839 Accesses

Abstract

Skeletonization provides a compact, yet effective representation of an object. Despite limited resolution, most medical imaging applications till date use binary skeletonization which is always associated with thresholding related data loss. A recently-developed fuzzy skeletonization algorithm directly operates on fuzzy objects in the presence of partially volumed voxels and alleviates this data loss. In this paper, the performance of fuzzy skeletonization is examined in a popular biomedical application of characterizing human trabecular bone (TB) plate/rod micro-architecture under limited resolution and compared with a binary method. Experimental results have shown that, using the volumetric topological analysis, fuzzy skeletonization leads to more accurate and reproducible measure of TB plate-width than the binary method. Also, fuzzy skeletonization-based plate-width measure showed a stronger linear association (\(R^{2} = 0.92\)) with the actual bone strength than the binary skeletonization-based measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. (2015). http://www.sciencedirect.com/science/article/pii/S0167865515001233

  2. Saha, P., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imag. 34(9), 1940–1964 (2015)

    Article  Google Scholar 

  3. Siddiqi, K., Pizer, S.M.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, The Netherlands (2008)

    Google Scholar 

  4. Jin, D., Saha, P.K.: A new fuzzy skeletonization algorithm and its applications to medical imaging. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 662–671. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Kleerekoper, M., Villanueva, A.R., Stanciu, J., Rao, D.S., Parfitt, A.M.: The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calc. Tiss. Int. 37, 594–597 (1985)

    Article  Google Scholar 

  6. Recker, R.R.: Architecture and vertebral fracture. Calc. Tiss. Int. 53(Suppl 1), S139–142 (1993)

    Article  Google Scholar 

  7. Saha, P.K., Xu, Y., Duan, H., Heiner, A., Liang, G.: Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE Trans. Med. Imag. 29(11), 1821–1838 (2010)

    Article  Google Scholar 

  8. Chen, C., Jin, D., Liu, Y., Wehrli, F.W., Chang, G., Snyder, P.J., Regatte, R.R., Saha, P.K.: Volumetric topological analysis on in vivo trabecular bone magnetic resonance imaging. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 501–510. Springer, Heidelberg (2014)

    Google Scholar 

  9. Krug, R., Burghardt, A.J., Majumdar, S., Link, T.M.: High-resolution imaging techniques for the assessment of osteoporosis. Radiol. Clin. North Am. 48(3), 601–621 (2010)

    Article  Google Scholar 

  10. Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmentation: theory, algorithms, and validation. Comp. Vis. Imag. Und. 77, 145–174 (2000)

    Article  Google Scholar 

  11. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd edn. Thomson Engineering, Toronto, Canada (2007)

    Google Scholar 

  12. Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn. Lett. (2015). http://www.sciencedirect.com/science/article/pii/S0167865515001063

  13. Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Trans. Patt. Anal. Mach. Intell. 16, 1028–1032 (1994)

    Article  Google Scholar 

  14. Sanniti di Baja, G.: Well-shaped, stable, and reversible skeletons from the (3,4)-distance transform. J. Vis. Commun. Image Represent. 5, 107–115 (1994)

    Article  Google Scholar 

  15. Saha, P.K., Chaudhuri, B.B., Majumder, D.D.: A new shape preserving parallel thinning algorithm for 3D digital images. Pat. Recog. 30, 1939–1955 (1997)

    Article  Google Scholar 

  16. Arcelli, C., Sanniti di Baja, G.: Finding local maxima in a pseudo- euclidean distance transform. Comp. Vis. Graph Imag. Proc. 43, 361–367 (1988)

    Article  Google Scholar 

  17. Borgefors, G.: Distance transformations in digital images. Comp. Vis. Graph Imag. Proc. 34, 344–371 (1986)

    Article  Google Scholar 

  18. Borgefors, G.: Distance transform in arbitrary dimensions. Comp. Vis. Graph Imag. Proc. 27, 321–345 (1984)

    Article  Google Scholar 

  19. Arcelli, C., Sanniti di Baja, G.: A width-independent fast thinning algorithm. IEEE Trans. Patt. Anal. Mach. Intell. 7(4), 463–474 (1985)

    Article  Google Scholar 

  20. Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance-driven skeletonization in voxel images. IEEE Trans. Patt. Anal. Mach. Intell. 33(4), 709–720 (2011)

    Article  Google Scholar 

  21. Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comp. Vis. Imag. Und. 86, 171–190 (2002)

    Article  MATH  Google Scholar 

  22. Svensson, S.: Aspects on the reverse fuzzy distance transform. Pat. Recog. Lett. 29, 888–896 (2008)

    Article  Google Scholar 

  23. Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Comp. Vis. Imag. Und. 63, 418–429 (1996)

    Article  Google Scholar 

  24. Liu, Y., Jin, D., Li, C., Janz, K.F., Burns, T.L., Torner, J.C., Levy, S.M., Saha, P.K.: A robust algorithm for thickness computation at low resolution and its application to in vivo trabecular bone CT imaging. IEEE Trans. Biomed. Eng. 61(7), 2057–2069 (2014)

    Article  Google Scholar 

  25. Saha, P.K., Wehrli, F.W.: Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans. Med. Imag. 23, 53–62 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, C., Jin, D., Saha, P.K. (2015). Fuzzy Skeletonization Improves the Performance of Characterizing Trabecular Bone Micro-architecture. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics