Abstract
Skeletonization provides a compact, yet effective representation of an object. Despite limited resolution, most medical imaging applications till date use binary skeletonization which is always associated with thresholding related data loss. A recently-developed fuzzy skeletonization algorithm directly operates on fuzzy objects in the presence of partially volumed voxels and alleviates this data loss. In this paper, the performance of fuzzy skeletonization is examined in a popular biomedical application of characterizing human trabecular bone (TB) plate/rod micro-architecture under limited resolution and compared with a binary method. Experimental results have shown that, using the volumetric topological analysis, fuzzy skeletonization leads to more accurate and reproducible measure of TB plate-width than the binary method. Also, fuzzy skeletonization-based plate-width measure showed a stronger linear association (\(R^{2} = 0.92\)) with the actual bone strength than the binary skeletonization-based measure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Saha, P.K., Borgefors, G., di Baja, G.S.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. (2015). http://www.sciencedirect.com/science/article/pii/S0167865515001233
Saha, P., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imag. 34(9), 1940–1964 (2015)
Siddiqi, K., Pizer, S.M.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, The Netherlands (2008)
Jin, D., Saha, P.K.: A new fuzzy skeletonization algorithm and its applications to medical imaging. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 662–671. Springer, Heidelberg (2013)
Kleerekoper, M., Villanueva, A.R., Stanciu, J., Rao, D.S., Parfitt, A.M.: The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calc. Tiss. Int. 37, 594–597 (1985)
Recker, R.R.: Architecture and vertebral fracture. Calc. Tiss. Int. 53(Suppl 1), S139–142 (1993)
Saha, P.K., Xu, Y., Duan, H., Heiner, A., Liang, G.: Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE Trans. Med. Imag. 29(11), 1821–1838 (2010)
Chen, C., Jin, D., Liu, Y., Wehrli, F.W., Chang, G., Snyder, P.J., Regatte, R.R., Saha, P.K.: Volumetric topological analysis on in vivo trabecular bone magnetic resonance imaging. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 501–510. Springer, Heidelberg (2014)
Krug, R., Burghardt, A.J., Majumdar, S., Link, T.M.: High-resolution imaging techniques for the assessment of osteoporosis. Radiol. Clin. North Am. 48(3), 601–621 (2010)
Saha, P.K., Udupa, J.K., Odhner, D.: Scale-based fuzzy connected image segmentation: theory, algorithms, and validation. Comp. Vis. Imag. Und. 77, 145–174 (2000)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision, 3rd edn. Thomson Engineering, Toronto, Canada (2007)
Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn. Lett. (2015). http://www.sciencedirect.com/science/article/pii/S0167865515001063
Saha, P.K., Chaudhuri, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Trans. Patt. Anal. Mach. Intell. 16, 1028–1032 (1994)
Sanniti di Baja, G.: Well-shaped, stable, and reversible skeletons from the (3,4)-distance transform. J. Vis. Commun. Image Represent. 5, 107–115 (1994)
Saha, P.K., Chaudhuri, B.B., Majumder, D.D.: A new shape preserving parallel thinning algorithm for 3D digital images. Pat. Recog. 30, 1939–1955 (1997)
Arcelli, C., Sanniti di Baja, G.: Finding local maxima in a pseudo- euclidean distance transform. Comp. Vis. Graph Imag. Proc. 43, 361–367 (1988)
Borgefors, G.: Distance transformations in digital images. Comp. Vis. Graph Imag. Proc. 34, 344–371 (1986)
Borgefors, G.: Distance transform in arbitrary dimensions. Comp. Vis. Graph Imag. Proc. 27, 321–345 (1984)
Arcelli, C., Sanniti di Baja, G.: A width-independent fast thinning algorithm. IEEE Trans. Patt. Anal. Mach. Intell. 7(4), 463–474 (1985)
Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance-driven skeletonization in voxel images. IEEE Trans. Patt. Anal. Mach. Intell. 33(4), 709–720 (2011)
Saha, P.K., Wehrli, F.W., Gomberg, B.R.: Fuzzy distance transform: theory, algorithms, and applications. Comp. Vis. Imag. Und. 86, 171–190 (2002)
Svensson, S.: Aspects on the reverse fuzzy distance transform. Pat. Recog. Lett. 29, 888–896 (2008)
Saha, P.K., Chaudhuri, B.B.: 3D digital topology under binary transformation with applications. Comp. Vis. Imag. Und. 63, 418–429 (1996)
Liu, Y., Jin, D., Li, C., Janz, K.F., Burns, T.L., Torner, J.C., Levy, S.M., Saha, P.K.: A robust algorithm for thickness computation at low resolution and its application to in vivo trabecular bone CT imaging. IEEE Trans. Biomed. Eng. 61(7), 2057–2069 (2014)
Saha, P.K., Wehrli, F.W.: Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans. Med. Imag. 23, 53–62 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, C., Jin, D., Saha, P.K. (2015). Fuzzy Skeletonization Improves the Performance of Characterizing Trabecular Bone Micro-architecture. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)