Abstract
RGB-D mapping or semantic mapping is becoming more and more important for computer vision and robotics. However, manually segmenting and generating semantic labels for RGB-D image sequence or global point cloud will cost a lot of human labors. That is why there still lacks a satisfactory indoor dataset for testing semantic mapping system. While automatic label propagation can help, almost all existing methods were designed for 2D videos which ignore the 3D characteristics of RGB-D images. In this paper, we build a global map for RGB-D image sequence firstly, and then propagate labels on the global map. In this way, we can enforce label consistency over the global scene and require fewer frames to be manually labeled. Also we model the overlap information between images and use a greedy algorithm to automatically choose frames for manual labeling. Experiments demonstrate that our method can reduce manual efforts greatly. For a scene which contains 1831 images, only 22 labeled images can achieve 93 % accuracy for label propagation.
Keke Tang and Zhe Zhao — These two authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: Rgb-d mapping: Using kinect-style depth cameras for dense 3d modeling of indoor environments. I. J. Robotic Res. 31, 647–663 (2012)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.W.: Kinectfusion: Real-time dense surface mapping and tracking. In: ISMAR, pp. 127–136 (2011)
Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: spatially extended KinectFusion. In: RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia (2012)
Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3d visual slam with a hand-held rgb-d camera. In: Proceedings of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, vol. 2011 (2011)
Ren, X., Bo, L., Fox, D.: Rgb-(d) scene labeling: features and algorithms. In: CVPR, pp. 2759–2766 (2012)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012)
Silberman, N., Fergus, R.: Indoor scene segmentation using a structured light sensor. In: ICCV Workshops, pp. 601–608 (2011)
Banica, D., Sminchisescu, C.: CPMC-3D-O2P: Semantic segmentation of rgb-d images using cpmc and second order pooling, CoRR abs/1312.7715 (2013)
Gupta, S., Arbelaez, P., Malik, J.: Perceptual organization and recognition of indoor scenes from rgb-d images. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 564–571. IEEE (2013)
Couprie, C., Farabet, C., Najman, L., LeCun, Y.: Indoor semantic segmentation using depth information, (2013). arXiv preprint arXiv:1301.3572
Nüchter, A., Hertzberg, J.: Towards semantic maps for mobile robots. Robotics Auton. Syst. 56, 915–926 (2008)
Stuckler, J., Biresev, N., Behnke, S.: Semantic mapping using object-class segmentation of rgb-d images. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3005–3010. IEEE (2012)
Hermans, A., Floros, G., Leibe, B.: Dense 3d semantic mapping of indoor scenes from rgb-d images. In: ICRA (2014)
Koppula, H.S., Anand, A., Joachims, T., Saxena, A.: Semantic labeling of 3d point clouds for indoor scenes. In: NIPS, pp. 244–252 (2011)
Valentin, J.P., Sengupta, S., Warrell, J., Shahrokni, A., Torr, P.H.: Mesh based semantic modelling for indoor and outdoor scenes. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2067–2074. IEEE (2013)
Floros, G., Leibe, B.: Joint 2d–3d temporally consistent semantic segmentation of street scenes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2823–2830. IEEE (2012)
Miksik, O., Munoz, D., Bagnell, J.A., Hebert, M.: Efficient temporal consistency for streaming video scene analysis. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 133–139. IEEE (2013)
Xiao, J., Owens, A., Torralba, A.: Sun3d: A database of big spaces reconstructed using sfm and object labels. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1625–1632. IEEE (2013)
Vijayanarasimhan, S., Grauman, K.: Active frame selection for label propagation in videos. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 496–509. Springer, Heidelberg (2012)
Fauqueur, J., Brostow, G.J., Cipolla, R.: Assisted video object labeling by joint tracking of regions and keypoints. In: ICCV, pp. 1–7 (2007)
Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1994, pp. 593–600. IEEE (1994)
Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. IJCAI 81, 674–679 (1981)
Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials, CoRR abs/1210.5644 (2012)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Tang, K., Zhao, Z., Chen, X. (2015). Label Propagation for Large Scale 3D Indoor Scenes. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)