Skip to main content

Graph-Based Visualization of Neuronal Connectivity Using Matrix Block Partitioning and Edge Bundling

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Neuronal connectivity matrices contain information vital to the understanding of brain structure and function. In this work we present graph-based visualization techniques for macroscale connectivity matrices that retain anatomical context while reducing the clutter and occlusion problems that plague 2D and 3D node-link diagrams. By partitioning the connectivity matrix into blocks corresponding to brain hemispheres and bundling graph edges we are able to generate intuitive visualizations that permit investigation at multiple scales (hemisphere, lobe, anatomical region). We demonstrate our approach on connectivity matrices computed using tractography of high angular resolution diffusion images acquired as part of a Parkinson’s disease study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005)

    Article  Google Scholar 

  2. Behrens, T.E., Sporns, O.: Human connectomics. Curr. Opin. Neurobiol. 22, 144–153 (2012)

    Article  Google Scholar 

  3. Micheva, K.D., Smith, S.J.: Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007)

    Article  Google Scholar 

  4. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259 (1994)

    Article  Google Scholar 

  5. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)

    Article  Google Scholar 

  6. Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J.P., Sporns, O., Do, K.Q., Maeder, P., Meuli, R., Hagmann, P.: Mapping the human connectome at multiple scales with diffusion spectrum MRI. J. Neurosci. Methods 203, 386–397 (2012)

    Article  Google Scholar 

  7. Margulies, D.S., Böttger, J., Watanabe, A., Gorgolewski, K.J.: Visualizing the human connectome. NeuroImage 80, 445–461 (2013)

    Article  Google Scholar 

  8. Pfister, H., Kaynig, V., Botha, C.P., Bruckner, S., Dercksen, V.J., Hege, H.C., Roerdink, J.B.: Visualization in connectomics. In: Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.) Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization, pp. 221–245. Springer, London (2014)

    Google Scholar 

  9. McGraw, T., Nadar, M.: Stochastic DT-MRI connectivity mapping on the GPU. IEEE Trans. Visual. Comput. Graphics 13, 1504–1511 (2007)

    Article  Google Scholar 

  10. McGraw, T., Herring, D.: High-order diffusion tensor connectivity mapping on the GPU. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., El Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 396–405. Springer, Heidelberg (2014)

    Google Scholar 

  11. Sporns, O.: The human connectome: a complex network. Ann. NY Acad. Sci. 1224, 109–125 (2011)

    Article  Google Scholar 

  12. Dinkla, K., Westenberg, M.A., van Wijk, J.J.: Compressed adjacency matrices: untangling gene regulatory networks. IEEE Trans. Visual. Comput. Graphics 18, 2457–2466 (2012)

    Article  Google Scholar 

  13. Sheny, Z., Maz, K.L.: Path visualization for adjacency matrices. In: Proceedings of the 9th Joint Eurographics/IEEE VGTC Conference on Visualization, Eurographics Association, pp. 83–90 (2007)

    Google Scholar 

  14. Henry, N., Fekete, J.D., McGuffin, M.J.: Nodetrix: a hybrid visualization of social networks. IEEE Trans. Visual. Comput. Graphics 13, 1302–1309 (2007)

    Article  Google Scholar 

  15. Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graphics Forum 28, 983–990 (2009)

    Article  Google Scholar 

  16. Bottger, J., Schafer, A., Lohmann, G., Villringer, A., Margulies, D.S.: Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain. IEEE Trans. Visual. Comput. Graphics 20, 471–480 (2014)

    Article  Google Scholar 

  17. Li, K., Guo, L., Faraco, C., Zhu, D., Chen, H., Yuan, Y., Lv, J., Deng, F., Jiang, X., Zhang, T., et al.: Visual analytics of brain networks. NeuroImage 61, 82–97 (2012)

    Article  Google Scholar 

  18. Al-Awami, A., Beyer, J., Strobelt, H., Kasthuri, N., Lichtman, J., Pfister, H., Hadwiger, M.: Neurolines: a subway map metaphor for visualizing nanoscale neuronal connectivity. IEEE Trans. Visual. Comput. Graphics (Proceedings IEEE InfoVis) 2014(20), 2369–2378 (2014)

    Article  Google Scholar 

  19. Irimia, A., Chambers, M.C., Torgerson, C.M., Van Horn, J.D.: Circular representation of human cortical networks for subject and population-level connectomic visualization. NeuroImage 60, 1340–1351 (2012)

    Article  Google Scholar 

  20. Rosenholtz, R., Li, Y., Nakano, L.: Measuring visual clutter. J. Vis. 7, 1–22 (2007)

    Article  Google Scholar 

  21. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002)

    Article  Google Scholar 

  22. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6, 183–210 (1995)

    Article  Google Scholar 

  23. Weldeselassie, Y.T., Barmpoutis, A., Atkins, M.S.: Symmetric positive semi-definite Cartesian tensor fiber orientation distributions (CT-FOD). Med. Image Anal. 16, 1121–1129 (2012)

    Article  Google Scholar 

  24. Baggio, H.C., Sala-Llonch, R., Segura, B., Marti, M.J., Valldeoriola, F., Compta, Y., Tolosa, E., Junqué, C.: Functional brain networks and cognitive deficits in Parkinson’s disease. Hum. Brain Mapp. 35, 4620–4634 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim McGraw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

McGraw, T. (2015). Graph-Based Visualization of Neuronal Connectivity Using Matrix Block Partitioning and Edge Bundling. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics