Abstract
In this paper, we propose an unsupervised video object co-segmentation framework based on the primary object proposals to extract the common foreground object(s) from a given video set. In addition to the objectness attributes and motion coherence our framework exploits the temporal consistency of the object-like regions between adjacent frames to enrich the original set of object proposals. We call the enriched proposal sets temporal proposal streams, as they are composed of the most similar proposals from each frame augmented with predicted proposals using temporally consistent superpixel information. The temporal proposal streams represent all the possible region tubes of the objects. Therefore, we formulate a graphical model to select a proposal stream for each object in which the pairwise potentials consist of the appearance dissimilarity between different streams in the same video and also the similarity between the streams in different videos. This model is suitable for single (multiple) foreground objects in two (more) videos, which can be solved by any existing energy minimization method. We evaluate our proposed framework by comparing it to other video co-segmentation algorithms. Our method achieves improved performance on state-of-the-art benchmark datasets.
M.Y. Yang and M. Reso—The first two authors contribute equally to this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV, pp. 1995–2002 (2011)
Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: CVPR, pp. 628–635 (2013)
Yang, M., Rosenhahn, B.: Video segmentation with joint object and trajectory labeling. In: WACV, pp. 831–838 (2014)
Rubio, J.C., Serrat, J., López, A.: Video co-segmentation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 13–24. Springer, Heidelberg (2013)
Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)
Chiu, W.C., Fritz, M.: Multi-class video co-segmentation with a generative multi-video model. In: CVPR, pp. 321–328 (2013)
Fu, H., Xu, D., Zhang, B., Lin, S.: Object-based multiple foreground video co-segmentation. In: CVPR, pp. 3166–3173 (2014)
Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: CVPR, pp. 993–1000 (2006)
Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: CVPR, pp. 2217–2224 (2011)
Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: CVPR, pp. 1943–1950 (2010)
Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: CVPR, pp. 542–549 (2012)
Ma, T., Latecki, L.J.: Maximum weight cliques with mutex constraints for video object segmentation. In: CVPR, pp. 670–677 (2012)
Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: CVPR, pp. 2141–2148 (2010)
Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 656–671. Springer, Heidelberg (2014)
Chen, D., Chen, H.T., Chang, L.: Video object cosegmentation. In: ACM International Conference on Multimedia, pp. 805–808 (2012)
Guo, J., Cheong, L.-F., Tan, R.T., Zhou, S.Z.: Consistent foreground co-segmentation. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 241–257. Springer, Heidelberg (2015)
Reso, M., Jachalsky, J., Rosenhahn, B., Ostermann, J.: Temporally consistent superpixels. In: ICCV, pp. 385–392 (2013)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26, 1124–1137 (2004)
Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Process. 22, 3766–3778 (2013)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)
Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. PAMI 28, 1568–1583 (2006)
Lou, Z., Gevers, T.: Extracting primary objects by video co-segmentation. IEEE Trans. Multimedia 16, 2110–2117 (2014)
Acknowledgements
The work is partially funded by DFG (German Research Foundation) YA 351/2-1. The authors gratefully acknowledge the support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Yang, M.Y., Reso, M., Tang, J., Liao, W., Rosenhahn, B. (2015). Temporally Object-Based Video Co-segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)