Skip to main content

Temporally Object-Based Video Co-segmentation

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2851 Accesses

Abstract

In this paper, we propose an unsupervised video object co-segmentation framework based on the primary object proposals to extract the common foreground object(s) from a given video set. In addition to the objectness attributes and motion coherence our framework exploits the temporal consistency of the object-like regions between adjacent frames to enrich the original set of object proposals. We call the enriched proposal sets temporal proposal streams, as they are composed of the most similar proposals from each frame augmented with predicted proposals using temporally consistent superpixel information. The temporal proposal streams represent all the possible region tubes of the objects. Therefore, we formulate a graphical model to select a proposal stream for each object in which the pairwise potentials consist of the appearance dissimilarity between different streams in the same video and also the similarity between the streams in different videos. This model is suitable for single (multiple) foreground objects in two (more) videos, which can be solved by any existing energy minimization method. We evaluate our proposed framework by comparing it to other video co-segmentation algorithms. Our method achieves improved performance on state-of-the-art benchmark datasets.

M.Y. Yang and M. Reso—The first two authors contribute equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV, pp. 1995–2002 (2011)

    Google Scholar 

  2. Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: CVPR, pp. 628–635 (2013)

    Google Scholar 

  3. Yang, M., Rosenhahn, B.: Video segmentation with joint object and trajectory labeling. In: WACV, pp. 831–838 (2014)

    Google Scholar 

  4. Rubio, J.C., Serrat, J., López, A.: Video co-segmentation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 13–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chiu, W.C., Fritz, M.: Multi-class video co-segmentation with a generative multi-video model. In: CVPR, pp. 321–328 (2013)

    Google Scholar 

  7. Fu, H., Xu, D., Zhang, B., Lin, S.: Object-based multiple foreground video co-segmentation. In: CVPR, pp. 3166–3173 (2014)

    Google Scholar 

  8. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In: CVPR, pp. 993–1000 (2006)

    Google Scholar 

  9. Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: CVPR, pp. 2217–2224 (2011)

    Google Scholar 

  10. Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: CVPR, pp. 1943–1950 (2010)

    Google Scholar 

  11. Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: CVPR, pp. 542–549 (2012)

    Google Scholar 

  12. Ma, T., Latecki, L.J.: Maximum weight cliques with mutex constraints for video object segmentation. In: CVPR, pp. 670–677 (2012)

    Google Scholar 

  13. Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: CVPR, pp. 2141–2148 (2010)

    Google Scholar 

  14. Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part IV. LNCS, vol. 8692, pp. 656–671. Springer, Heidelberg (2014)

    Google Scholar 

  15. Chen, D., Chen, H.T., Chang, L.: Video object cosegmentation. In: ACM International Conference on Multimedia, pp. 805–808 (2012)

    Google Scholar 

  16. Guo, J., Cheong, L.-F., Tan, R.T., Zhou, S.Z.: Consistent foreground co-segmentation. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 241–257. Springer, Heidelberg (2015)

    Google Scholar 

  17. Reso, M., Jachalsky, J., Rosenhahn, B., Ostermann, J.: Temporally consistent superpixels. In: ICCV, pp. 385–392 (2013)

    Google Scholar 

  18. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26, 1124–1137 (2004)

    Article  Google Scholar 

  19. Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Process. 22, 3766–3778 (2013)

    Article  MathSciNet  Google Scholar 

  20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  21. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. PAMI 28, 1568–1583 (2006)

    Article  Google Scholar 

  22. Lou, Z., Gevers, T.: Extracting primary objects by video co-segmentation. IEEE Trans. Multimedia 16, 2110–2117 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially funded by DFG (German Research Foundation) YA 351/2-1. The authors gratefully acknowledge the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Reso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, M.Y., Reso, M., Tang, J., Liao, W., Rosenhahn, B. (2015). Temporally Object-Based Video Co-segmentation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics