Abstract
Multiple object tracking is a challenging problem because of issues like background clutter, camera motion, partial or full occlusions, change in object pose and appearance etc. Most of the existing algorithms use local and/or global association based optimization between the detections and trackers to find correct object IDs. We propose a hierarchical frame-by-frame association method that exploits a spatial layout consistency and inter-object relationship to resolve object identities across frames. The spatial layout consistency based association is used as the first hierarchical step to identify easy targets. This is done by finding a MRF-MAP solution for a probabilistic graphical model using a minimum spanning tree over the object locations and finding an exact inference in polynomial time using belief propagation. For difficult targets, which can not be resolved in the first step, a relative motion model is used to predict the state of occlusion for each target. This along with the information about immediate neighbors of the target in the group is used to resolve the identities of the objects which are occluded either by other objects or by the background. The unassociated difficult targets are finally resolved according to the state of the object along with template matching based on SURF correspondences. Experimentations on benchmark datasets have shown the superiority of our proposal compared to a greedy approach and is found to be competitive compared to state-of-the-art methods. The proposed concept of association is generic in nature and can be easily employed with other multi-object tracking algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., Hengel, A.V.D.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 58 (2013)
Smeulders, A., Chu, D., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1442–1468 (2014)
Zhang, X., Yang, Y.H., Han, Z.: Object class detection: a survey. ACM Comput. Surv. 46, 10 (2013)
Yang, B., Nevatia, R.: An online learned CRF model for multi-target tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2034–2041. IEEE (2012)
Yang, B., Nevatia, R.: Multi-target tracking by online learning a CRF model of appearance and motion patterns. Int. J. Comput. Vis. 107, 203–217 (2014)
Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36, 58–72 (2014)
Bae, S.H., Yoon, K.J.: Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1218–1225. IEEE (2014)
Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Analy. Mach. Intell. 33, 1806–1819 (2011)
Ben Shitrit, H., Berclaz, J., Fleuret, F., Fua, P.: Tracking multiple people under global appearance constraints. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 137–144. IEEE (2011)
Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for tracking a variable number of objects. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1201–1208. IEEE (2011)
Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1273–1280. IEEE (2011)
Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1272. IEEE (2011)
Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1820–1833 (2011)
Shu, G., Dehghan, A., Oreifej, O., Hand, E., Shah, M.: Part-based multiple-person tracking with partial occlusion handling. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1815–1821. IEEE (2012)
Song, X., Cui, J., Zha, H., Zhao, H.: Vision-based multiple interacting targets tracking via on-line supervised learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 642–655. Springer, Heidelberg (2008)
Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75, 247–266 (2007)
Guha, P., Mukerjee, A., Subramanian, V.K.: Ocs-14: You can get occluded in fourteen ways. In: 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1665–1670 (2011)
Poiesi, F., Mazzon, R., Cavallaro, A.: Multi-target tracking on confidence maps: an application to people tracking. Comput. Vis. Image Underst. 117, 1257–1272 (2013)
Milan, A., Leal-Taixé, L., Schindler, K., Reid, I.: Joint tracking and segmentation of multiple targets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5397–5406 (2015)
Yoon, J.H., Yang, M.H., Lim, J., Yoon, K.J.: Bayesian multi-object tracking using motion context from multiple objects. In: 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 33–40 (2015)
Guha, P., Mukerjee, A., Subramanian, V.K.: Formulation, detection and application of occlusion states (oc-7) in the context of multiple object tracking. In: 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS 2011), pp. 191–196. IEEE (2011)
Ess, A., Leibe, B., Schindler, K., Van Gool, L.: Robust multiperson tracking from a mobile platform. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1831–1846 (2009)
Pets 2009 (2009). http://www.cvg.reading.ac.uk/PETS2009/
Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybridboosted multi-target tracker for crowded scene. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2953–2960. IEEE (2009)
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process. 2008, 1 (2008)
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking. ArXiv e-prints (2015)
Garg, S., Rajesh, R., Kumar, S., Guha, P.: An occlusion reasoning scheme for monocular pedestrian tracking in dynamic scenes. In: 12th IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS 2015) (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Garg, S., Hassan, E., Kumar, S., Guha, P. (2015). A Hierarchical Frame-by-Frame Association Method Based on Graph Matching for Multi-object Tracking. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-27857-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27856-8
Online ISBN: 978-3-319-27857-5
eBook Packages: Computer ScienceComputer Science (R0)