Skip to main content

Multi-target Tracking Using Sample-Based Data Association for Mixed Images

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

  • 2831 Accesses

Abstract

The ubiquitous specular reflections arose from glasses seriously degrade accuracy of previous visual trackers. Although there have been few visual tracking schemes developed for mixed images with reflections, none focuses on the issue of multi-target tracking. Thus, this paper proposes a multi-target tracking scheme on mixed images with reflections. In the framework of particle filter, the proposed scheme combines the sample-based joint probabilistic data association filter (SJPDAF) with a single target based tracker that uses co-inference and maximum likelihood for visual cue integration to improve tracking accuracy of multiple targets. The co-inference predicted states are used for measurement validation of the SJPDAF. Experimental results show that the proposed scheme works well compared with the SJPDAF tracker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wu, Y., Lim, J.W., Yang, M.-H.: Online object tracking: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

  2. Elgharib, M.A., Pitie, F., Kokaram, A., Saligrama, V.: User-assisted reflection detection and feature point tracking. In: Proceedings of the European Conference on Visual Media Production (2013)

    Google Scholar 

  3. Weiss, Y.: Deriving intrinsic images from image sequences. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 68–75 (2001)

    Google Scholar 

  4. Chen, H.-T., Tang, C.-W.: Visual tracking using blind source separation for mixed images. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 6548–6552 (2014)

    Google Scholar 

  5. Chen, H.-T., Tang, C.-W.: Robust tracking using visual cue integration for mobile mixed images. J. Vis. Commun. Image Represent. 30, 208–218 (2015)

    Article  Google Scholar 

  6. Chang, K.-C., Bar-Shalom, Y.: Joint probabilistic data association for multitarget tracking with possibly unresolved measurements and maneuvers. IEEE Trans. Automat. Control. 29(7), 585–594 (1984)

    Article  MATH  Google Scholar 

  7. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: People tracking with mobile robots using sample-based joint probabilistic data association filters. Int. J. Robot. Res. 2(2), 99–116 (2003)

    Article  Google Scholar 

  8. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using K-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011)

    Article  Google Scholar 

  9. Bar-Shalom, Y., Willett, P.K., Tian, X.: Tracking and Data Fusion. A Handbook of Algorithms. Yaakov Bar-Shalom, Storrs (2011)

    Google Scholar 

  10. Krausbling, A., Schulz, D.: Tracking extended targets - a switching algorithm versus the SJPDAF. In: Proceedings of the IEEE International Conference on Information Fusion, pp. 1–8 (2006)

    Google Scholar 

  11. Pham, N.T., Leman, K., Wong, M., Gao, F.: Combining JPDA and particle filter for visual tracking. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 1044–1049 (2010)

    Google Scholar 

  12. Chavali, P., Nehorai, A.: Concurrent particle filtering and data association using game theory for tracking multiple maneuvering targets. IEEE Trans. Sig. Process. 61(20), 4934–4948 (2013)

    Article  MathSciNet  Google Scholar 

  13. Wu, Y., Huang, T.S.: Robust visual tracking by integrating multiple cues based on co-inference learning. Int. J. Comput. Vis. 58(1), 55–71 (2004)

    Article  Google Scholar 

  14. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T., et al.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  15. Nummiaro, K., Koller-Meier, E., Gool, L.V.: An adaptive color-based particle filter. Image Vis. Comput. 21(1), 99–110 (2003)

    Article  Google Scholar 

  16. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Lu, J.-Y., Wei, Y.-C., Tang, C.-W.: Visual tracking using compensated motion model for mobile cameras. In: Proceedings of the IEEE International Conference on Image Processing, pp. 489–492 (2011)

    Google Scholar 

  18. Li, S., Gaizhi, G.: The application of improved HSV color space model in image processing. In: Proceedings of International Conference on Future Computer and Communication, vol. 2, pp. 10–13 (2010)

    Google Scholar 

  19. Aherne, F., Thacker, N., Rockett, P.: The Bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34(4), 363–368 (1998)

    MATH  MathSciNet  Google Scholar 

  20. Naqvi, S.M., Mihaylovay, L., Chambers, J.A.: Clustering and a joint probabilistic data association filter for dealing with occlusions in multi-target tracking. In: Proceedings of IEEE International Conference on Information Fusion, pp. 1730–1735 (2013)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science and Technology of Taiwan under the Grants MOST-103-2221-E-008-061 and MOST-104-2221-E-008-059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Wei Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, Th., Chen, HT., Tang, CW. (2015). Multi-target Tracking Using Sample-Based Data Association for Mixed Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics