Skip to main content

Motion Priors Estimation for Robust Matching Initialization in Automotive Applications

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9474))

Included in the following conference series:

Abstract

Tracking keypoints through a video sequence is a crucial first step in the processing chain of many visual SLAM approaches. This paper presents a robust initialization method to provide the initial match for a keypoint tracker, from the 1st frame where a keypoint is detected to the 2nd frame, that is: when no depth information is available. We deal explicitly with the case of long displacements. The starting position is obtained through an optimization that employs a distribution of motion priors based on pyramidal phase correlation, and epipolar geometry constraints. Experiments on the KITTI dataset demonstrate the significant impact of applying a motion prior to the matching. We provide detailed comparisons to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trummer, M., Munkelt, C., Denzler, J.: Extending GKLT tracking—feature tracking for controlled environments with integrated uncertainty estimation. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 460–469. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. IJCAI 81, 674–679 (1981)

    Google Scholar 

  3. Tomasi, C., Kanade, T.: Detection and tracking of point features. School of Computer Science, Carnegie Mellon University, Pittsburgh (1991)

    Google Scholar 

  4. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the CVPR 1994. pp. 593–600. IEEE (1994)

    Google Scholar 

  5. Sutton, M.A., Orteu, J.J., Schreier, H.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, New York (2009)

    Google Scholar 

  6. Ochoa, B., Belongie, S.: Covariance propagation for guided matching. In: Proceedings of the Statistical Methods in Multi-image and Video Processing (SMVP) (2006)

    Google Scholar 

  7. Piccini, T., Persson, M., Nordberg, K., Felsberg, M., Mester, R.: Good edgels to track: beating the aperture problem with epipolar geometry. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014 Workshops. LNCS, vol. 8926, pp. 652–664. Springer, Heidelberg (2015)

    Google Scholar 

  8. Birchfield, S.T., Pundlik, S.J.: Joint tracking of features and edges. In: CVPR 2008, pp. 1–6. IEEE (2008)

    Google Scholar 

  9. Bradler, H., Wiegand, B., Mester, R.: The statistics of driving sequences - and what we can learn from them. In: ICCV Workshop on Computer Vision for Road Scene Understanding and Autonomous Driving, Santiago de Chile (2015)

    Google Scholar 

  10. Ochs, M., Bradler, H., Mester, R.: Enhanced phase correlation for reliable and robust estimation of multiple motion distributions. In: Pacific Rim Symposium on Image and Video Technology, Auckland, New Zealand (2015)

    Google Scholar 

  11. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: Proceedings of the CVPR 2009, pp. 41–48. IEEE (2009)

    Google Scholar 

  12. Barnada, M., Conrad, C., Bradler, H., Ochs, M., Mester, R.: Estimation of automotive pitch, yaw, and roll using enhanced phase correlation on multiple far-field windows. In: Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul (2015)

    Google Scholar 

  13. Mester, R., Hötter, M.: Robust displacement vector estimation including a statistical error analysis. In: 5th Internernational Conference on Image Processing and its Applications, Edinburgh, UK, pp. 168–172 (1995)

    Google Scholar 

  14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  15. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 389–395 (2013)

    Article  Google Scholar 

  16. Persson, M., Piccini, T., Felsberg, M., Mester, R.: Robust stereo visual odometry from monocular techniques. In: Proceedings of the Intelligent Vehicles Symposium, Seoul (2015)

    Google Scholar 

  17. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nolang Fanani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fanani, N., Barnada, M., Mester, R. (2015). Motion Priors Estimation for Robust Matching Initialization in Automotive Applications. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9474. Springer, Cham. https://doi.org/10.1007/978-3-319-27857-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27857-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27856-8

  • Online ISBN: 978-3-319-27857-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics