Skip to main content

Tumor Blood Vessels and Tumor Endothelial Cells

  • Chapter
  • First Online:
  • 752 Accesses

Abstract

Tumor endothelial cells contribute to tumor progression through recruitment of endothelial precursor cells and changes in the structure of the existing vascular endothelium creating an escape route for cancer cells to generate metastases. The tumor-associated endothelium is structurally defective, express several cell surface markers absent in quiescent blood vessels, and present several gene expression abnormalities. Pericytes deficiency could be responsible for vessel abnormalities in tumor blood vessels and partial dissociation of pericytes contribute to increased tumor vascular permeability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ahmad SA, Liu W, Jung YD et al (2001) The effects of angiopoietin-1 and −2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 61:1255–1259

    CAS  PubMed  Google Scholar 

  • Akimoto S, Nakanishi Y, Sakamoto M et al (2004) Laminin 5β3 and γ2 chains are frequently coexpressed in cancer cells. Pathol Int 54:688–692

    Article  CAS  PubMed  Google Scholar 

  • Baluk P, Morikawa S, Haskell A et al (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163:1801–1815

    Article  PubMed Central  PubMed  Google Scholar 

  • Baluk P, Hashizume H, Mc Donald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Song S, Mayer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM et al (2013) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22:2298–2314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chae SS, Paik JH, Furneaux H et al (2004) Requirement for sphingosine 1-phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 114:1082–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang SH, Kanaaki K, Gocheva V et al (2009) VEGF-A induces angiogenesis by perturbing the cathepsin-cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation. Cancer Res 69:4537–4544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chantrain CF, Shimada H, Jodele S et al (2004) Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64:1675–1686

    Article  CAS  PubMed  Google Scholar 

  • Colorado PC, Torre A, Kamphaus G et al (2000) Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res 60:2520–2526

    CAS  PubMed  Google Scholar 

  • Cooke VG, Le Belu VS, Keskin D et al (2012) Pericyte depletivo results in hypoxia-associated epithelial to mesenchyme transition and metastasis mediated by met signaling pathway. Cancer Cell 21:66–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daldrup H, Shames DM, Wendland M et al (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Am J Roentgenol 171:941–949

    Article  CAS  Google Scholar 

  • Dvorak HF, Nagy JA, Dvorak JT et al (1988) Identification and characterization of the blood vessel of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eberhard A, Kahlert S, Goede V et al (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60:1388–1393

    CAS  PubMed  Google Scholar 

  • Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29:10–14

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H, Semb H (2008) Pericytes: gatekeepers in tumor cell metastasis? J Mol Med 86:135–144

    Article  PubMed  Google Scholar 

  • Giatromanolaki A, Sivridis E, Minopoulos G et al (2002) Differential assessment of vascular survival ability and tumor angiogenic activity in colorectal cancer. Clin Cancer Res 8:1185–1191

    PubMed  Google Scholar 

  • Guo P, Hu B, Gu W et al (1985) Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162:1083–1093

    Article  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    Article  CAS  PubMed  Google Scholar 

  • Kolonin MG, Pasqualini R, Arap W (2001) Molecular addresses in blood vessel as targets for therapy. Curr Opin Chem Biol 5:308–313

    Article  CAS  PubMed  Google Scholar 

  • Langenkamp E, Molema G (2009) Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer. Cell Tissue Res 335:205–222

    Article  CAS  PubMed  Google Scholar 

  • Machein MR, Knedla A, Knoth R et al (2004) Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magnussen A, Kasman IM, Norberg S et al (2005) Rapid access of antibodies to α5β1 integrin overexpressed on the luminal surface of tumor blood vessels. Cancer Res 65:2712–2721

    Article  CAS  PubMed  Google Scholar 

  • Mancuso MR, Davis R, Norberg SM et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Masood R, Gordon EM, Whitley MD et al (2001) Retroviral vectors bearing IgG-binding motifs for antibody-mediated targeting of vascular endothelial growth factor receptors. Int J Mol Med 8:335–343

    CAS  PubMed  Google Scholar 

  • Mc Donald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  CAS  Google Scholar 

  • Michigami T, Nomizu M, Yamada Y et al (1998) Growth and dissemination of a newly-established murine B-cell lymphoma cell line is inhibited by multimeric YIGSR peptide. Clin Exp Metastasis 16:645–654

    Article  CAS  PubMed  Google Scholar 

  • Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000

    Article  PubMed Central  PubMed  Google Scholar 

  • Murphy EA, Shields DJ, Stoletov K et al (2010) Disruption of angiogenesis and tumor growth with an orally active drug that stabilzes the inactive state of PDGFRβ/B-RAF. Proc Natl Acad Sci USA 107:4299–4304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakai M, Mundy GR, Williams PJ et al (1992) A synthetic antagonist to laminin inhibits the formation of osteolytic metastases by human melanoma cells in nude mice. Cancer Res 52:5395–5399

    CAS  PubMed  Google Scholar 

  • Nielsen BS, Sehested M, Kjeldsen L et al (1997) Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77:345–355

    CAS  PubMed  Google Scholar 

  • Pezzolo A, Parodi F, Marimpietri D et al (2011) Oct4+/tenascin+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells. Cell Res 21:1470–1486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pezzolo A, Marimpietri D, Raffaghello L et al (2014) Failure of anti-tumor derived endothelial cell immunotherapy depends on augmentation of tumor hypoxia. Oncotarget 15:10368–10381

    Article  Google Scholar 

  • Reinmuth N, Liu W, Jung YD et al (2001) Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 15:1239–1241

    CAS  PubMed  Google Scholar 

  • Ria R, Todoerti K, Berardi S et al (2009) Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma. Clin Cancer Res 15:5369–5378

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2005) The crucial role of vascular permeability factor/vascular endothelial growth factor in angiogenesis: a historical review. Br J Haematol 128:303–309

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A (2013) Genes and proteins of myeloma endothelial cells to search specific targets of the tumor microenvironment. In: Munschi NC, Anderson KC (eds) Advances in biology and therapy of multiple myeloma, vol 1, Basic science. Springer, New York, pp 241–254

    Chapter  Google Scholar 

  • Ribatti D, Vacca A, Nico B et al (1996) Angiogenesis spectrum in the stroma of B-cell non Hodgkin’s lymphomas. An immunohistochemical and ultrastructural study. Eur J Haematol 56:45–53

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro AL, Okamoto OK (2015) Combined effects of pericytes in the tumor microenvironment. Stem Cells Int 2015, 868475

    Article  PubMed Central  PubMed  Google Scholar 

  • Santamaria M, Moscatelli G, Viale GL et al (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579

    Google Scholar 

  • Schlingemann RO, Rietveld FJ, de Wall RM et al (1990) Expression of the high molecular weight melanoma-associated antigen by pericytes duirng angiogenesis in tumors and in healing wounds. Am J Pathol 136:1393–1405

    PubMed Central  CAS  PubMed  Google Scholar 

  • Senger DR, Perruzzi CA, Feder J et al (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632

    CAS  PubMed  Google Scholar 

  • Sennino B, Falcon BL, McCauley D et al (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67:7358–7367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shaheen RM et al (2001) Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanism. Cancer Res 61:1464–1468

    CAS  PubMed  Google Scholar 

  • Song S, Ewald AJ, Stallcup W et al (2005) PDGFRbeta+ prerivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spurbeck WW, Ng CY, Strom TS et al (2002) Enforced expression of tissue inhibitor of matrix metalloproteinase-3 affects functional capillary morphogenesis and inhibits tumor growth in a murine tumor model. Blood 100:3361–3368

    Article  CAS  PubMed  Google Scholar 

  • St Croix B, Rago C, Velculescu V et al (2000) Gene expressed in human tumor and endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427

    Article  PubMed  Google Scholar 

  • Vermeulen PB, Verhoeven D, Hubens G et al (1995) Microvessels density, endothelial cell proliferation and tumor cell proliferation in human colorectal adenocarcinomas. Ann Oncol 6:59–64

    CAS  PubMed  Google Scholar 

  • Wesseling P, Schlingemann RO, Rietveld FJ et al (1995) Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 54:304–310

    Article  CAS  PubMed  Google Scholar 

  • Xian X, Håkansson J, Ståhlberg A et al (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642–651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ribatti, D. (2016). Tumor Blood Vessels and Tumor Endothelial Cells. In: The Role of Microenvironment in the Control of Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-27820-9_2

Download citation

Publish with us

Policies and ethics