Advertisement

Variational and Topological Methods

  • Leszek Gasiński
  • Nikolaos S. Papageorgiou
Chapter
Part of the Problem Books in Mathematics book series (PBM)

Abstract

Let X be a set and let \(\varphi: X\longrightarrow \overline{\mathbb{R}} = \mathbb{R} \cup \{ +\infty \}\) be a map. One of the main problems of the Calculus of Variations is to find the minimum value
$$\displaystyle{m(\varphi )\ =\ \inf _{u\in X}\varphi (u)}$$
and also investigate the set of minimizers, that is,
$$\displaystyle{S(\varphi )\ =\ \left \{u \in X:\ m(\varphi ) =\varphi (u)\right \}.}$$
The classical way to approach this problem is the so-called direct method of Tonelli. This method consists of determining a suitable topology on X for which the function \(\varphi\) is lower semicontinuous and coercive.

Bibliography

  1. [1]
    Ambrosetti, A., Arcoya, D.: An Introduction to Nonlinear Functional Analysis and Elliptic Problems. Birkhäuser, Boston (2011)CrossRefzbMATHGoogle Scholar
  2. [2]
    Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  3. [3]
    Chang, K.-C.: Infinite-Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)CrossRefzbMATHGoogle Scholar
  4. [4]
    Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, New York (2008)zbMATHGoogle Scholar
  5. [5]
    Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  6. [6]
    Gasiński, L., Papageorgiou, N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman & Hall/CRC, Boca Raton (2005)zbMATHGoogle Scholar
  7. [7]
    Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton (2006)zbMATHGoogle Scholar
  8. [8]
    Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  9. [9]
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)zbMATHGoogle Scholar
  10. [10]
    Mawhin, J., Willem M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  11. [11]
    Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  12. [12]
    Palais, R.S., Smale, S.: A generalized Morse theory. Bull. Am. Math. Soc. 70, 165–172 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Perera, K., Agarwal, R.P., O’Regan, D.: Morse Theoretic Aspects of p-Laplacian Type Operators. American Mathematical Society, Providence (2010)CrossRefzbMATHGoogle Scholar
  14. [14]
    Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)Google Scholar
  15. [15]
    Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (2008)zbMATHGoogle Scholar
  16. [16]
    Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)CrossRefzbMATHGoogle Scholar
  17. [17]
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. III. Springer, New York (1990)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leszek Gasiński
    • 1
  • Nikolaos S. Papageorgiou
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations