Degree Theory and Fixed Point Theory

  • Leszek Gasiński
  • Nikolaos S. Papageorgiou
Part of the Problem Books in Mathematics book series (PBM)


Degree theory deals with equations of the form \(\varphi (u) = h\) on a space X (finite of infinite dimensional). It addresses the questions of existence, uniqueness, or multiplicity of solutions and their distribution in the space. Moreover, it examines how sensitive are these properties to variations of \(\varphi\) and h.


  1. [1]
    Cronin, J.: Fixed Points and Topological Degree in Nonlinear Analysis. American Mathematical Society, Providence (1964)Google Scholar
  2. [2]
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)Google Scholar
  3. [3]
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic, Boston (2003)Google Scholar
  4. [4]
    Fonseca, I., Gangbo, W.: Degree Theory in Analysis and Applications. Oxford University Press, New York (1995)Google Scholar
  5. [5]
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)Google Scholar
  6. [6]
    Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Springer, Dordrecht (2006)Google Scholar
  7. [7]
    Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)Google Scholar
  8. [8]
    Krasnosel’skii, M.A.: Positive Solutions of Operator Equations. Noordhoff Ltd., Groningen (1964)Google Scholar
  9. [9]
    Krawcewicz, W., Wu, J.: Theory of Degrees with Applications to Bifurcations and Differential Equations. Wiley, New York (1997)Google Scholar
  10. [10]
    Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)Google Scholar
  11. [11]
    Papageorgiou, N.S., Kyritsi-Yiallourou, S.Th.: Handbook of Applied Analysis. Springer, New York (2009)Google Scholar
  12. [12]
    Rothe, E.H.: Introduction to Various Aspects of Degree Theory in Banach Spaces. American Mathematical Society, Providence (1986)Google Scholar
  13. [13]
    Smart, D.R.: Fixed Point Theorems. Cambridge University Press, London (1974)Google Scholar
  14. [14]
    Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. I. Springer, New York (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leszek Gasiński
    • 1
  • Nikolaos S. Papageorgiou
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations