Advertisement

Smooth and Nonsmooth Calculus

  • Leszek Gasiński
  • Nikolaos S. Papageorgiou
Chapter
Part of the Problem Books in Mathematics book series (PBM)

Abstract

In this chapter, X and Y are Banach spaces.

Bibliography

  1. [1]
    Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)Google Scholar
  2. [2]
    Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)Google Scholar
  3. [3]
    Buttazzo, G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific & Technical, New York (1989)Google Scholar
  4. [4]
    Cartan, H.: Formes Différentielles. Applications Élḿentaires au Calcul des Variations et a la Théorie des Courbes et des Surfaces. Hermann, Paris (1967)Google Scholar
  5. [5]
    Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)Google Scholar
  6. [6]
    Coleman, R.: Calculus on Normed Vector Spaces. Springer, New York (2012)Google Scholar
  7. [7]
    Dal Maso, G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)Google Scholar
  8. [8]
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic, Boston (2003)Google Scholar
  9. [9]
    Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)Google Scholar
  10. [10]
    Federer, H.: Geometric Measure Theory. Springer, New York (1969)Google Scholar
  11. [11]
    Gasiński, L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton (2006)Google Scholar
  12. [12]
    Giles, J.R.: Convex Analysis with Application in the Differentiation of Convex Functions. Pitman, Boston (1982)Google Scholar
  13. [13]
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)Google Scholar
  14. [14]
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic, New York (1980)Google Scholar
  15. [15]
    Papageorgiou, N.S., Kyritsi-Yiallourou, S.Th.: Handbook of Applied Analysis. Springer, New York (2009)Google Scholar
  16. [16]
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (1993)Google Scholar
  17. [17]
    Rockafellar, R.T., Wets R.: Variational Analysis. Springer, Berlin (1998)Google Scholar
  18. [18]
    Roubiček, T.: Relaxation in Optimization Theory and Variational Calculus. Walter de Gruyter & Co., Berlin (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leszek Gasiński
    • 1
  • Nikolaos S. Papageorgiou
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations