Nonlinear and Multivalued Maps

  • Leszek Gasiński
  • Nikolaos S. Papageorgiou
Part of the Problem Books in Mathematics book series (PBM)


Let X and Y be two Banach spaces, let \(D \subseteq X\) be a set, and let \(f: D\longrightarrow Y\) be a map.


  1. [1]
    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide. Springer, Berlin (2006)Google Scholar
  2. [2]
    Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (2009)Google Scholar
  3. [3]
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leiden (1976)Google Scholar
  4. [4]
    Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. American Elsevier Publishing Co., Inc., New York (1973)Google Scholar
  5. [5]
    Browder, F.E.: Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces. In: Proc. Sympos. Pure Math., vol. XVIII, Part 2, Chicago, 1968. American Mathematical Society, Providence (1976)Google Scholar
  6. [6]
    Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic, Boston (2003)Google Scholar
  7. [7]
    Gasiński L., Papageorgiou, N.S.: Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton (2006)Google Scholar
  8. [8]
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Vol. I. Theory. Kluwer Academic, Dordrecht (1997)Google Scholar
  9. [9]
    Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Vol. II. Applications. Kluwer Academic, Dordrecht (2000)Google Scholar
  10. [10]
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)Google Scholar
  11. [11]
    Klein, E., Thompson, A.C.: Theory of Correspondences. Wiley, New York (1984)Google Scholar
  12. [12]
    Papageorgiou, N.S., Kyritsi-Yiallourou, S.Th.: Handbook of Applied Analysis. Springer, New York (2009)Google Scholar
  13. [13]
    Pascali, D., Sburlan, S.: Nonlinear Mappings of Monotone Type. Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn (1978)Google Scholar
  14. [14]
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. I. Functional Analysis. Academic, New York (1980)Google Scholar
  15. [15]
    Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence, RI (1997)Google Scholar
  16. [16]
    Vainberg, M.M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Wiley, New York (1973)Google Scholar
  17. [17]
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vols. II/A and II/B. Springer, New York (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leszek Gasiński
    • 1
  • Nikolaos S. Papageorgiou
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Department of MathematicsNational Technical UniversityAthensGreece

Personalised recommendations