Skip to main content

Application of the QRV Method to Modelling of Plate Subduction

  • Chapter
  • First Online:
Data-Driven Numerical Modelling in Geodynamics: Methods and Applications

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

  • 583 Accesses

Abstract

This chapter presents the application of the QRV method to dynamic restoration of the thermal state of the mantle beneath the Japanese islands and their surroundings. The geodynamic restoration for the last 40 million years is based on the assimilation of the present temperature inferred from seismic tomography, and the present plate movement derived from geodetic observations, paleogeographic and paleomagnetic plate reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Argus DF, Gordon RG, DeMets C (2011) Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochem Geophys Geosyst 12:Q11001. doi:10.1029/2011GC003751

    Article  Google Scholar 

  • Billen MI (2008) Modeling the dynamics of subducting slabs. Annu Rev Earth Planet Sci 36:325–356

    Article  Google Scholar 

  • Billen MI, Hirth G (2005) Newtonian versus non-Newtonian upper mantle viscosity: implications for subduction initiation. Geophys Res Lett 32:L19304. doi:10.1029/2005GL023457

    Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4:1027. doi:10.1029/2001GC000252

    Article  Google Scholar 

  • Christensen U (1984) Convection with pressure and temperature-dependent non-Newtonian rheology. Geophys J Roy Astron Soc 77:343–384

    Article  Google Scholar 

  • Christensen UR, Yuen DA (1985) Layered convection induced by phase transitions. J Geophys Res 90:10291–10300

    Article  Google Scholar 

  • Christensen U, Yuen D (1989) Time-dependent convection with non-Newtonian viscosity. J Geophys Res 94:814–820

    Article  Google Scholar 

  • Doglioni C, Ismail-Zadeh A, Panza G, Riguzzi F (2011) Lithosphere-asthenosphere viscosity contrast and decoupling. Phys Earth Planet Inter 189:1–8

    Article  Google Scholar 

  • Drewes H (2009) The actual plate kinematic and crustal deformation model APKIM2005 as basis for a non-rotating ITRF. In: Drewes H (ed) Geodetic reference frames, IAG symposia series 134. Springer, Berlin, pp 95–99

    Chapter  Google Scholar 

  • Drewes H, Angermann D, Gerstl M, Krügel M, Meisel B, Seemüller W (2006) Analysis and refined computations of the international terrestrial reference frame. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, Heidelberg, pp 343–356

    Chapter  Google Scholar 

  • Durez T, Gerya TV, May DA (2011) Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502:244–256

    Article  Google Scholar 

  • Durham WB, Mei S, Kohlstedt DL, Wang L, Dixon NA (2009) New measurements of activation volume in olivine under anhydrous conditions. Phys Earth Planet Inter 172:67–73

    Article  Google Scholar 

  • Fukao Y, Widiyantoro S, Obayashi M (2001) Stagnant slabs in the upper and lower mantle transition region. Rev Geophys 39:291–323

    Article  Google Scholar 

  • Furumura T, Kennett BLN (2005) Subduction zone guided waves and the heterogeneity structure of the subducted plate – intensity anomalies in northern Japan. J Geophys Res 110:B10302. doi:10.1029/2004JB003486

    Article  Google Scholar 

  • Gordon RB (1967) Thermally activated processes in the Earth: Creep and seismic attenuation. Geophys J Roy Astron Soc 14:33–43

    Article  Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20:353–431

    Article  Google Scholar 

  • Hanyu T, Tatsumi Y, Nakai S, Chang Q, Miyazaki T, Sato K, Tani K, Shibata T, Yoshida T (2006) Contribution of slab melting and slab dehydration to magmatism in the NE Japan arc for the last 25 Myr: constraints from geochemistry. Geochem Geophys Geosyst 7:Q08002. doi:10.1029/2005GC001220

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the subduction factory. Geophysical monograph. 138. American Geophysical Union, Washington, DC, pp 83–105

    Chapter  Google Scholar 

  • Honda S, Balachandar S, Yuen DA, Reuteler D (1993a) Three-dimensional mantle dynamics with an endothermic phase transition. Geophys Res Lett 20:221–224

    Article  Google Scholar 

  • Honda S, Yuen DA, Balachandar S, Reuteler D (1993b) Three-dimensional instabilities of mantle convection with multiple phase transitions. Science 259:1308–1311

    Article  Google Scholar 

  • Huismans RS, Podladchikov YY, Cloetingh S (2001) Transition from passive to active rifting: relative importance of asthenospheric doming and passive extension of the lithosphere. J Geophys Res 106:11271–11291

    Article  Google Scholar 

  • Ingle CJ (1992) Subsidence of the Japan Sea: stratigraphic evidence from ODP sites and onshore sections. In: Tamaki K, Suyehiro K, Allan J, McWilliams et al (eds) Proceedings of the ocean drilling program scientific results, 127/128, Pt. 2. Ocean Drilling Program, College Station, pp 1197–1218

    Google Scholar 

  • Ismail-Zadeh A, Tackley P (2010) Computational methods for geodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ismail-Zadeh A, Mueller B, Schubert G (2005) Three-dimensional modeling of present-day tectonic stress beneath the earthquake-prone southeastern Carpathians based on integrated analysis of seismic, heat flow, and gravity observations. Phys Earth Planet Inter 149:81–98

    Article  Google Scholar 

  • Ismail-Zadeh A, Korotkii A, Schubert G, Tsepelev I (2007) Quasi-reversibility method for data assimilation in models of mantle dynamics. Geophys J Int 170:1381–1398

    Article  Google Scholar 

  • Ismail-Zadeh A, Honda S, Tsepelev I (2013) Linking mantle upwelling with the lithosphere descent and the Japan Sea evolution: a hypothesis. Sci Rep 3:1137. doi:10.1038/srep01137

    Google Scholar 

  • Jolivet L, Tamaki K, Fournier M (1994) Japan Sea, opening history and mechanism: a synthesis. J Geophys Res 99:22232–22259

    Article  Google Scholar 

  • Karato S, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778

    Article  Google Scholar 

  • Karato S-I, Riedel MR, Yuen DA (2001) Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys Earth Planet Inter 127:83–108

    Article  Google Scholar 

  • Karig DE (1971) Origin and development of marginal basins in the Western Pacific. J Geophys Res 76:2542–2561

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E, Funakoshi K (2004) Olivine-wadsleyite transition in the system (Mg, Fe)2SiO4. J Geophys Res 109:B02209. doi:10.1029/2003JB002438

    Article  Google Scholar 

  • Lee CTA, Chen WP (2007) Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth’s mantle. Earth Planet Sci Lett 255:357–366

    Article  Google Scholar 

  • Liu M, Yuen DA, Zhao W, Honda S (1991) Development of diapiric structures in the upper mantle due to phase transitions. Science 252:1836–1839

    Article  Google Scholar 

  • Malevsky AV, Yuen DA (1992) Strongly chaotic non-Newtonian mantle convection. Geophys Astrophys Fluid Dyn 65:149–171

    Article  Google Scholar 

  • Maruyama S, Isozaki Y, Kimura G, Terabayashi M (1997) Paleogeographic maps of the Japanese islands: plate tectonic synthesis from 750 Ma to the present. Island Arc 6:121–142

    Article  Google Scholar 

  • Miller MS, Gorbatov A, Kennett BLN (2005) Heterogeneity within the subducting Pacific plate beneath the Izu-Bonin-Mariana arc: evidence from tomography using 3D ray-tracing inversion techniques. Earth Planet Sci Lett 235:331–342

    Article  Google Scholar 

  • Morishige M, Honda S, Yoshida M (2010) Possibility of hot anomaly in the sub-slab mantle as an origin of low seismic velocity anomaly under the subducting Pacific plate. Phys Earth Planet Inter 183:353–365

    Article  Google Scholar 

  • Northrup CJ, Royden LH, Burchfiel BC (1995) Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia. Geology 23:719–722

    Article  Google Scholar 

  • Obayashi M, Sugioka H, Yoshimitsu J, Fukao Y (2006) High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity. Earth Planet Sci Lett 243:149–158

    Article  Google Scholar 

  • Obayashi M, Yoshimitsu J, Fukao Y (2009) Tearing of stagnant slab. Science 324:1173–1175

    Article  Google Scholar 

  • Otofuji Y, Matsuda T, Nohda S (1985) Opening mode of the Japan Sea inferred from the paleomagnetism of the Japan arc. Nature 317:603–604

    Article  Google Scholar 

  • Patankar SV, Spalding DB (1972) A calculation procedure for heat and mass transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806

    Article  Google Scholar 

  • Saad Y (1996) Iterative methods for sparse linear systems. PWS, Boston

    Google Scholar 

  • Samarskii AA, Vabishchevich PN (1995) Computational heat transfer. Vol. 2. The finite difference methodology. Wiley, New York

    Google Scholar 

  • Savage MK (1999) Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting. Rev Geophys 374:65–106

    Article  Google Scholar 

  • Schellart WP, Stegman DR, Freeman J (2008) Global trench migration velocities and slab migration induced upper mantle volume fluxes: constraints to find an earth reference frame based on minimizing viscous dissipation. Earth Sci Rev 88:118–144

    Article  Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Seno T, Maruyama S (1984) Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics 102:53–84

    Article  Google Scholar 

  • Sleep N, Toksoz MN (1971) Evolution of marginal basins. Nature 233:548–550

    Article  Google Scholar 

  • Stadler G, Gurnis M, Burstedde C, Wilcox LC, Alisic L, Ghattas O (2010) The dynamics of plate tectonics and mantle flow: from local to global scales. Science 329:1033–1038

    Article  Google Scholar 

  • Tatsumi Y, Otofuji Y, Matsuda T, Nohda S (1989) Opening of the Japan Sea by asthenospheric injection. Tectonophysics 166:317–329

    Article  Google Scholar 

  • Uyeda S, Kanamori H (1979) Back-arc opening and the model of subduction. J Geophys Res 84:1049–1061

    Article  Google Scholar 

  • Van der Vorst HA (1992) BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

    Article  Google Scholar 

  • Wang K, Hyndman RD, Yamano M (1995) Thermal regime of the Southwest Japan subduction zone: effects of age history of the subducting plate. Tectonophysics 248:53–69

    Article  Google Scholar 

  • Widiyantoro S, van der Hilst RD (1996) Structure and evolution of subducted lithosphere beneath the Sunda Arc. Science 271:1566–1570

    Article  Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290:1910–1917

    Article  Google Scholar 

  • Yamano M, Kinoshita M, Goto S, Matsubayashi O (2003) Extremely high heat flow anomaly in the middle part of the Nankai Trough. Phys Chem Earth 28:487–497

    Article  Google Scholar 

  • Yamazaki T, Takahashi M, Iryu Y, Sato T, Oda M, Takayanagi H, Chiyonobu S, Nishimura A, Nakazawa T, Ooka T (2010) Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores. Earth Planets Space 62:495–502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Ismail-Zadeh, A., Korotkii, A., Tsepelev, I. (2016). Application of the QRV Method to Modelling of Plate Subduction. In: Data-Driven Numerical Modelling in Geodynamics: Methods and Applications. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-27801-8_6

Download citation

Publish with us

Policies and ethics