Skip to main content

13 The Regulation of Carbon Metabolism in Filamentous Fungi

  • Chapter
  • First Online:
Book cover Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume III))

Abstract

Microorganisms have been selected to be metabolically efficient. Simple sugars such as glucose or sucrose are used in preference to more complex carbon sources, and the regulatory mechanisms required for achieving this in filamentous fungi form the focus of this chapter. Specifically, transport and sensing of glucose are considered, also induction and repression of genes. These processes have been thoroughly studied in Aspergillus nidulans. Although much is known, this chapter also underscores that we are still some way from a full understanding of the regulation of carbon metabolism in filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah BM, Simoes T, Fernandes AR, Strauss J, Seiboth B, Sa-Correia I, Kubicek CP (2000) Glucose does not activate the plasma-membrane-bound H + -ATPase but affects pmaA transcript abundance in Aspergillus nidulans. Arch Microbiol 174:340–345

    Article  PubMed  CAS  Google Scholar 

  • Agger T, Petersen JB, O’Connor SM, Murphy RL, Kelly JM, Nielsen J (2002) Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A. oryzae α-amylase. J Biotechnol 92:279–285

    Article  PubMed  CAS  Google Scholar 

  • Arst HN (1981) Aspects of the control of gene expression in fungi. Symp Soc Gen Microbiol 31:131–160

    Google Scholar 

  • Arst HN, Bailey CR (1977) The regulation of carbon metabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus nidulans. Academic, London, pp 131–146

    Google Scholar 

  • Arst HN, Cove DJ (1973) Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126:111–141

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, MacDonald DW (1975) A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254:26–34

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, Tollervey D, Dowzer CEA, Kelly JM (1990) An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite repression. Mol Microbiol 4:851–854

    Article  PubMed  CAS  Google Scholar 

  • Bailey CR, Arst HN (1975) Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51:573–577

    Article  PubMed  CAS  Google Scholar 

  • Baker SP, Grant PA (2007) The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 26:5329–5340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bautista LF, Aleksenko A, Hentzer M, Santerre-Henriksen A, Nielsen J (2000) Antisense silencing of the creA gene in Aspergillus nidulans. Appl Environ Microbiol 66:4579–4581

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bernardo SMH, Gray K-A, Todd RB, Cheetham BF, Katz ME (2007) Characterization of regulatory non-catalytic hexokinases in Aspergillus nidulans. Mol Genet Genomics 277:519–532

    Article  PubMed  CAS  Google Scholar 

  • Boase NA, Kelly JM (2004) A role for creD, a carbon catabolite repression gene from Aspergillus nidulans, in ubiquitination. Mol Microbiol 53:929–940

    Article  PubMed  CAS  Google Scholar 

  • Boase NA, Lockington RA, Adams JRJ, Rodbourn L, Kelly JM (2003) Molecular characterization and analysis of the acrB gene of Aspergillus nidulans: a gene identified by genetic interaction as a component of the regulatory network that includes the CreB deubiquitination enzyme. Genetics 164:95–104

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brown NA, de Gouvea PF, Krohn NG, Savoldi M, Goldman GH (2013) Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. Biotechnol Biofuels 6:91

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Castro LDS, Pedersoli WR, Antonio ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM, Rossi A, Brown NA, Goldman GH, Faa VM, Persinoti GF, Silva RN (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7:41

    Article  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJS, Ramos ASP, Junior JRF, Abrahao-Neto J, Farah JPS, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:13983–13988

    Article  PubMed  CAS  Google Scholar 

  • Chulkin AM, Vavilova EA, Benevolenskij SV (2010) Transcriptional regulator of carbon catabolite repression CreA of filamentous fungus Penicillium canescens. Mol Biol 44:596–605

    Article  CAS  Google Scholar 

  • Chulkin AM, Vavilova EA, Benevolenskii SV (2011) Mutational analysis of carbon catabolite repression in filamentous fungus Penicillium canescens. Mol Biol 45:804–810

    Article  CAS  Google Scholar 

  • Colabardini AC, Humanes AC, Gouvea PF, Savoldi M, Goldman MHS, von Zeska Kress MR, Bayram O, de Castro Oliveira JV, Gomes MD, Braus GH, Goldman GH (2012) Molecular characterization of the Aspergillus nidulans fbxA encoding an F-box protein involved in xylanase induction. Fungal Genet Biol 49:130–140

    Article  PubMed  CAS  Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different, adjacent and divergent zinc finger binding sites are necessary for CreA mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cubero B, Gomez D, Scazzocchio C (2000) Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J Bacteriol 182:233–235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cziferszsky A, Mach R, Cubicek CP (2002) Phosphorylation positively regulates DNA binding by the carbon catabolite repressor Cre1 of Hypocrea jecorina (Trichoderma reesei). J Biol Chem 277:14688–14694

    Article  CAS  Google Scholar 

  • Cziferszsky A, Mach R, Cubicek CP (2003) The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1. Fungal Genet Biol 40:166–175

    Article  CAS  Google Scholar 

  • D’Andrea A, Pellman D (1998) Deubiquitinating enzymes: a new class of biological regulators. Crit Rev Biochem Mol Biol 33:337–352

    Article  PubMed  Google Scholar 

  • David H, Akesson M, Nielsen J (2003) Reconstruction of the central carbon metabolism of Aspergillus niger. Eur J Biochem 270:4243–4253

    Article  PubMed  CAS  Google Scholar 

  • David H, Krogh AM, Roca C, Akesson M, Nielsen J (2005) CreA influences the metabolic fluxes of Aspergillus nidulans during growth on glucose and xylose. Microbiology 151:2209–2221

    Article  PubMed  CAS  Google Scholar 

  • David H, Hofmann G, Oliveira AP, Jarmer H, Nielsen J (2006) Metabolic network driven analysis of genome-wide transcription data from Aspergillus nidulans. Genome Biol 7:R108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de la Serna I, Ng D, Tyler BM (1999) Carbon regulation of ribosomal genes in Neurospora crassa occurs by a mechanism which does not require Cre-1, the homologue of the Aspergillus carbon catabolite repressor. CreA Fungal Genet Biol 26:253–269

    Article  PubMed  Google Scholar 

  • De Vit MJ, Johnston M (1999) The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr Biol 9:1231–1241

    Article  Google Scholar 

  • De Vit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618

    Article  PubMed Central  PubMed  Google Scholar 

  • Delmas S, Pullan S, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB (2012) Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet 8:e1002875

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Denton J, Kelly JM (2011) Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity. BMC Biotechnol 11:9

    Article  CAS  Google Scholar 

  • Dowzer CEA, Kelly JM (1989) Cloning of creA from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459

    Article  PubMed  CAS  Google Scholar 

  • Dowzer CEA, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drysdale MR, Kolze SE, Kelly JM (1993) The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene 130:241–245

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Penalva MA (1994) In vitro binding of the two-finger repressor CREA to several consensus and non-consensus sites at the ipnA upstream region is context dependent. FEBS Lett 342:43–48

    Article  PubMed  CAS  Google Scholar 

  • Espeso EA, Fernandez-canon JM, Penalva MA (1995) Carbon regulation of penicillin biosynthesis in Aspergillus nidulans – a minor effect of mutations in creB and creC. FEMS Microbiol Lett 126:63–67

    Article  PubMed  CAS  Google Scholar 

  • Felenbok B, Flipphi M, Nikolaev I (2001) Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucleic Acid Res Mol Biol 69:149–204

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, Mathieu M, Cirpus I, Panozzo C, Felenbok B (2001) Regulation of the aldehyde dehydrogenase gene (aldA) and its role in the control of the coinducer level necessary for induction of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 276:6950–6958

    Article  PubMed  CAS  Google Scholar 

  • Flipphi M, van de Vondervoort PJ, Ruijter GJ, Visser J, Arst HN, Felenbok B (2003) Onset of carbon catabolite repression in Aspergillus nidulans. Parallel involvement of hexokinase and glucokinase in sugar signaling. J Biol Chem 278:11849–11857

    Article  PubMed  CAS  Google Scholar 

  • Forment JV, Flipphi M, Ventura L, Gonzalez R, Ramon D, MacCabe AP (2014) High affinity glucose transport in Aspergillus nidulans is regulated by the products of two related but differentially expressed genes. PLoS One 9, e94662

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(334):1998

    Google Scholar 

  • Garcia I, Gonzalez R, Gomez D, Scazzocchio C (2004) Chromatin rearrangements in the prnD-prnB bidirectional promoter: dependence on transcription factors. Eukaryot Cell 3:144–156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garcia I, Mathieu M, Nikolaev I, Felenbok B, Scazzocchio C (2008) Roles of the Aspergillus nidulans homologues of Tup1 and Ssn6 in chromatin structure and cell viability. FEMS Microbiol Lett 289:146–154

    Article  PubMed  CAS  Google Scholar 

  • Geever RF, Huiet L, Baum JA, Tyler BM, Patel VB, Rutledge BJ, Case ME, Giles NH (1989) DNA sequence, organization and regulation of the qa gene cluster in Neurospora crassa. J Mol Biol 207:15–34

    Article  PubMed  CAS  Google Scholar 

  • Giles NH, Case ME, Baum J, Geever R, Huiet L, Patel V, Tyler B (1985) Gene organisation and regulation in the qa (qunic acid) cluster of Neurospora crassa. Microbiol Rev 49:338–358

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hansen-Hagge TE, Janssen JWG, Hameister H, Papa FR, Zechner U, Seriu T, Jauch A, Becke D, Hochstrasser M, Bartram CR (1998) An evolutionarily conserved gene on chromosome 5q33-q34, UBH1, encodes a novel deubiquitinating enzyme. Genomics 49:411–418

    Article  PubMed  CAS  Google Scholar 

  • Hicks J, Lockington RA, Strauss J, Dieringer D, Kubicek CP, Kelly J, Keller N (2001) RcoA has pleiotropic effects on Aspergillus nidulans cellular development. Mol Microbiol 39:1482–1493

    Article  PubMed  CAS  Google Scholar 

  • Hunter AJ, Morris TA, Jin B, Kelly JM (2013) Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity. Appl Environ Microbiol 79:5480–5487

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hynes MJ (1970) Induction and repression of amidase enzymes in Aspergillus nidulans. J Bacteriol 103:482–487

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hynes MJ, Davis MA (2004) Regulation of the amdS gene in Aspergillus nidulans. In: Esser K (ed) The Mycota III: Biochemistry and molecular biology, 2nd edn. Springer, Berlin, pp 421–435

    Chapter  Google Scholar 

  • Hynes MJ, Kelly JM (1977) Pleiotropic mutants of Aspergillus nidulans altered in carbon metabolism. Mol Gen Genet 150:193–204

    Article  PubMed  CAS  Google Scholar 

  • Ichinose S, Tanaka M, Shintani T, Gomi K (2014) Improved α-amylase production by Aspergillus oryzae after a double deletion of genes involved in carbon catabolite repression. Appl Microbiol Biotechnol 98:335–343

    Article  PubMed  CAS  Google Scholar 

  • Ilmen M, Thrane C, Pentilla M (1996) The glucose repressor gene, cre1 of Trichoderma reesei - isolation of a full length and truncated mutant form. Mol Gen Genet 251:451–460

    PubMed  CAS  Google Scholar 

  • Jekosch K, Kueck U (2000a) Glucose dependent transcriptional expression of the cre1 gene in Acremonium chrysogenum strains showing different levels of cephalosporin C production. Curr Genet 37:388–395

    Article  PubMed  CAS  Google Scholar 

  • Jekosch K, Kueck U (2000b) Loss of glucose repression in an Acremonium chrysogenum beta-lactam producer strain and its restoration by multiple copies of the cre1 gene. Appl Microbiol Biotechnol 54:556–563

    Article  PubMed  CAS  Google Scholar 

  • Jonkers W, Rep M (2009) Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol Microbiol 74:1100–1113

    Article  PubMed  CAS  Google Scholar 

  • Kamlangdee N (2008) Identifying target proteins of the CreB deubiquitination enzyme in the fungus, Aspergillus nidulans. University of Adelaide, Adelaide

    Google Scholar 

  • Katz ME, Kelly JM (2010) Glucose. In: Borkovich K, Ebbole D (eds) Cellular and molecular biology of filamentous fungi. American Society for Microbiology Press, Washington, DC

    Google Scholar 

  • Katz ME, Flynn PK, van Kuyk P, Cheetham BF (1996) Mutations affecting extracellular protease production in the filamentous fungus, Aspergillus nidulans. Mol Gen Genet 250:715–724

    PubMed  CAS  Google Scholar 

  • Katz ME, Masoumi A, Burrows SR, Shirtliff CG, Cheetham BF (2000) The Aspergillus nidulans xprF gene encodes a hexokinase-like protein involved in the regulation of the extracellular proteases. Genetics 156:1559–1571

    PubMed Central  PubMed  CAS  Google Scholar 

  • Katz ME, Gray K-A, Cheetham BF (2006) The Aspergillus nidulans xprG (phoG) gene encodes a putative transcriptional activator involved in the response to nutrient limitation. Fungal Genet Biol 43:190–199

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki L, Farres A, Aguirre J (1995) Aspergillus nidulans mutants affected in acetate metabolism isolated as lipid nonutilizers. Exp Mycol 19:81–85

    Article  PubMed  CAS  Google Scholar 

  • Kelly JM (1980) Pleiotropic mutants of Aspergillus nidulans affected in carbon metabolism. PhD Thesis, La Trobe University, Australia

    Google Scholar 

  • Kelly JM, Hynes MJ (1977) Increased and decreased sensitivity to carbon catabolite repression of enzymes of acetate metabolism in mutants of Aspergillus nidulans. Mol Gen Genet 156:87–92

    Article  PubMed  CAS  Google Scholar 

  • Kim J-H, Roy A, Jouandot D, Cho KH (2013) The glucose signaling network in yeast. Biochim Biophys Acta 1830:5204–5210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klein CJL, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae – the role of MIG1 in metabolic functions. Microbiology 144:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kulmberg P, Sequeval D, Lenouvel F, Mathieu M, Felenbok B (1992a) Identification of the promoter region involved in the autoregulation of the transcriptional activator ALCR in Aspergillus nidulans. Mol Cell Biol 12:1932–1939

    Article  Google Scholar 

  • Kulmberg P, Sequeval D, Lenouval F, Mathieu M, Felenbok B (1992b) Specific binding sites for the activator protein, ALCR, in the alcA promoter of the ethanol regulon of Aspergillus nidulans. J Biol Chem 267:21146–21153

    Google Scholar 

  • Kulmberg P, Mathieu M, Dowzer C, Kelly J, Felenbok B (1993) Specific binding sites in the alcR and alcA promotors of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol 7:847–857

    Article  Google Scholar 

  • Lamb HK, Newton GH, Levett LJ, Cairns E, Roberts CF, Hawkins AR (1996) The QutA activator and QutR repressor proteins of Aspergillus nidulans interact to regulate transcription of the quinate utilization genes. Microbiology 142:1477–1490

    Article  PubMed  CAS  Google Scholar 

  • Levett LJ, Si-Hoe SM, Liddle S, Wheeler K, Smith D, Lamb HK, Newton GH, Coggins JR, Hawkins AR (2000) Identification of domains responsible for signal recognition and transduction within the QUTR transcription repressor protein. Biochem J 350:189–197

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li J, Lin L, Li H, Tian C, Ma Y (2014) Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose. Biotechnol Biofuels 7:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Limon MC, Pakula T, Saloheimo M, Penttila M (2011) The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Microb Cell Factories 10:40

    Article  CAS  Google Scholar 

  • Lockington RA, Kelly JM (2001) Carbon catabolite repression in Aspergillus nidulans involves deubiquitination. Mol Microbiol 40:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Kelly JM (2002) The WD40-repeat protein CreC interacts with and stabilizes the deubiquitinating enzyme CreB in vivo in Aspergillus nidulans. Mol Microbiol 43:1173–1182

    Article  PubMed  CAS  Google Scholar 

  • Lockington RA, Sealy-Lewis HM, Scazzocchio C, Davies RW (1985) Cloning and characterization of the ethanol utilization regulon in Aspergillus nidulans. Gene 33:137–149

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Qin Y, Pei Y, Keyhani NO (2014) Ablation of the creA regulator results in amino acid toxicity, temperature sensitivity, pleiotropic effects on cellular development and loss of virulence in the filamentous fungus Beauveria bassiana. Environ Microbiol 16:1122–1136

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Sano M, Maruyama Y, Tanno T, Akao T, Totsuka Y, Endo M, Sakurada R, Yamagata Y, Machida M, Akita O, Hasegawa F, Abe K, Gomi K, Nakajima T, Iguchi Y (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65:74–83

    Article  PubMed  CAS  Google Scholar 

  • Martin JE, Casqueiro J, Kosalkova K, Marcos AT, Gutierrez S (1999) Penicillin and cephalosporin biosynthesis: Mechanism of carbon catabolite regulation of penicillin production, Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 75:21–31

    CAS  Google Scholar 

  • Mathieu M, Felenbok B (1994) The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J 13:4022–4027

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mathieu M, Fillinger S, Felenbok B (2000) In vivo studies of upstream regulatory cis-acting elements of the alcR gene encoding the transactivator of the ethanol regulon in Aspergillus nidulans. Mol Microbiol 36:123–131

    Article  PubMed  CAS  Google Scholar 

  • Mathieu M, Nikolaev I, Scazzocchio C, Felenbok B (2005) Patterns of nucleosomal organization in the alc regulon of Aspergillus nidulans: roles of the AlcR transcriptional activator and the CreA global repressor. Mol Microbiol 56:535–548

    Article  PubMed  CAS  Google Scholar 

  • McCullough W, Payton MA, Roberts CF (1977) Carbon metabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic, London, pp 97–129

    Google Scholar 

  • Nadal M, Garcia-Pedrajas MD, Gold SE (2010) The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes. Phytopathology 100:1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300

    Article  PubMed  CAS  Google Scholar 

  • Nehlin J, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumor finger proteins. EMBO J 9:2891–2898

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1991) The control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J 10:3373–3377

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nikolaev I, Lenouvel F, Felenbok B (1999) Unique DNA binding specificity of the binuclear zinc AlcR activator of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem 274:9795–9802

    Article  PubMed  CAS  Google Scholar 

  • Orejas M, MacCabe AP, Gonzalez JAP, Kumar S, Ramon D (1999) Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31:177–184

    Article  PubMed  CAS  Google Scholar 

  • Orejas M, MacCabe AP, Perez-Gonzalez JA, Kumar S, Ramon D (2001) The wide-domain carbon catabolite repressor CreA indirectly controls expression of the Aspergillus nidulans xlnB gene, encoding the acidic endo-beta-(1,4)-xylanase X-24. J Bacteriol 183:1517–1523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ospina-Giraldo MD, Mullins E, Kang S (2003) Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet 44:49–57

    Article  PubMed  CAS  Google Scholar 

  • Ostling J, Carlberg M, Ronne H (1996) Functional domains in the Mig1 repressor. Mol Cell Biol 16:753–761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ostling J, Cassart JP, Vandenhaute J, Ronne H (1998) Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Mig1p repressor are important for its in vivo activity. Mol Gen Genet 260:269–279

    Article  PubMed  CAS  Google Scholar 

  • Panozzo C, Cornillot E, Felenbok B (1998) The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of sites. J Biol Chem 273:6367–6372

    Article  PubMed  CAS  Google Scholar 

  • Papamichos-Chronakis M, Petrakis T, Ktistaki E, Topalidou I, Tzamarias D (2002) Cti6, a PHD domain protein, bridges the Cyc8-Tup1 corepressor and the SAGA coactivator to overcome repression at GAL1. Mol Cell 9:1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Papamichos-Chronakis M, Gligoris T, Tzamarias D (2004) The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tupl co-repressor. EMBO Rep 5:368–372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pateman JA, Doy CH, Olsen JE, Norris U, Creaser EH, Hynes MJ (1983) Regulation of alcohol dehydrogenase and aldehyde dehydrogenase in Aspergillus nidulans. Proc R Soc Lond Ser B 217:243–264

    Article  CAS  Google Scholar 

  • Paulino M, Esperon P, Vega M, Scazzocchio C, Tapia O (2002) Modelling CreA protein-DNA recognition determinants. A molecular dynamics study of fully charged CreA-DNA model in water. J Mol Struct (Theochem) 580:225–242

    Article  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–817

    Article  PubMed  CAS  Google Scholar 

  • Porciuncula J de O, Furukawa T, Mori K, Shida Y, Hirakawa H, Tashiro K, Kuhara S, Nakagawa S, Morikawa Y, Ogasawara W (2013) Single nucleotide polymorphism analysis of a Trichoderma reesei hyper-cellulolytic mutant developed in Japan. Biosci Biotechnol Biochem 77:534–543

    Google Scholar 

  • Rechsteiner M, Rogers S (1996) PEST sequences and regulation by proteolysis. TIBS 21:267–271

    PubMed  CAS  Google Scholar 

  • Reyes-Dominguez Y, Narendja F, Berger H, Gallmetzer H, Fernandez-Martin R, Garcia I, Scazzocchio C, Strauss J (2008) Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot Cell 7:656–663

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ries L, Pullan ST, Delmas S, Sunir Malla S, Martin J, Blythe MJ, Archer DB (2013) Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics 14:541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ries L, Belshaw NJ, Ilmen M, Penttila ME, Alapuranen M, Archer DB (2014) The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl Microbiol Biotechnol 98:749–762

    Article  PubMed  CAS  Google Scholar 

  • Roberts CF (1963) The genetic analysis of carbohydrate utilization in Aspergillus nidulans. J Gen Microbiol 31:45–58

    Article  PubMed  CAS  Google Scholar 

  • Romano AH, Kornberg HL (1968) Regulation of sugar utilisation by Aspergillus nidulans. Biochem Biophys Acta 158:491–493

    Article  PubMed  CAS  Google Scholar 

  • Romano AH, Kornberg HL (1969) Regulation of sugar uptake by Aspergillus nidulans. Proc R Soc Lond Ser B 173:475–490

    Article  CAS  Google Scholar 

  • Roy P, Lockington RA, Kelly JM (2008) CreA-mediated repression in Aspergillus nidulans does not require transcriptional auto-regulation, regulated intracellular localisation or degradation of CreA. Fungal Genet Biol 45:657–670

    Article  PubMed  CAS  Google Scholar 

  • Ruijter GJG, Panneman H, Vandenbroeck HC, Bennett JM, Visser J (1996) Characterisation of Aspergillus frA1 mutant – hexose phosphorylation and apparent lack of involvement of hexokinase in glucose repression. FEMS Microbiol Lett 139:223–228

    Article  PubMed  CAS  Google Scholar 

  • Ruijter GJG, Vanhanen SA, Gielkens MMC, Vandevondervoort PJI, Visser J (1997) Isolation of Aspergillus niger creA mutants and effects of the mutations on expression of arabinases and L-arabinose catabolic enzymes. Microbiology 143:2991–2998

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Hishinuma F (1988) Isolation and characterization of mutants which show an oversecretion phenotype in Saccharomyces cerevisiae. Genetics 119:499–506

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sakai A, Shimizu Y, Kondou S, Chibazakura T, Hishinuma F (1990) Structure and molecular analysis of RGR1, a gene required for glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10:4130–4138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scazzocchio C, Gavrias V, Cubero B, Panozzo C, Mathieu M, Felenbok B (1995) Carbon catabolite repression in Aspergillus nidulans – A review. Can J Bot 73:S160–S166

    Article  CAS  Google Scholar 

  • Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160

    PubMed  Google Scholar 

  • Screen S, Bailey A, Charnley K, Cooper R, Clarkson J (1997) Carbon regulation of the cuticle-degrading enzyme PR1 from Metarhizium anisopliae may involve a trans-acting DNA-binding protein CRR1, a functional equivalent of the Aspergillus nidulans CREA protein. Curr Genet 31:511–518

    Article  PubMed  CAS  Google Scholar 

  • Shroff, RA (1997) PhD thesis, University of Adelaide, Australia

    Google Scholar 

  • Shroff RA, Lockington RA, Kelly JM (1996) Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can J Microbiol 42:950–959

    Article  PubMed  CAS  Google Scholar 

  • Shroff RA, O’Connor SM, Hynes MJ, Lockington RA, Kelly JM (1997) Null alleles of creA, the regulator of carbon catabolite repression in Aspergillus nidulans. Fungal Genet Biol 22:28–38

    Article  PubMed  CAS  Google Scholar 

  • Sibthorp C, Wu HH, Cowley G, Wong PWH, Palaima P, Morozov IY, Weedall GD, Caddick MX (2013) Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. BMC Genomics 14:847

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107

    Article  PubMed  CAS  Google Scholar 

  • Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP (1999) The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol Microbiol 32:168–178

    Article  Google Scholar 

  • Takashima S, Nakamura A, Hidaka M, Masaki H, Uozumi T (1998) Isolation of the creA gene from the cellulolytic fungus Humicola grisea and analysis of CreA binding sites upstream from the cellulase genes. Biosci Biotechnol Biochem 62:2364–2370

    Article  PubMed  CAS  Google Scholar 

  • Todd RB, Lockington RA, Kelly JM (2000) The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol Gen Genet 263:561–570

    Article  PubMed  CAS  Google Scholar 

  • Tonukari NJ, Scott-Craig JS, Walton JD (2000) The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12:237–247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by Ssn6p-Tup1p is directed by Mig1p, a repressor/activator protein. Proc Natl Acad Sci USA 92:3132–3136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tudzynski B, Liu S, Kelly JM (2000) Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes. FEMS Microbiol Lett 184:9–15

    Article  PubMed  CAS  Google Scholar 

  • Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor to differentially regulated promoters. Genes Dev 9:821–831

    Article  PubMed  CAS  Google Scholar 

  • van der Voorn L, Ploegh HL (1992) The WD-40 repeat. FEBS Lett 307:131–134

    Article  PubMed  Google Scholar 

  • van Kuyk PA, de Groot MJL, Ruijter GJG, de Vries RP, Visser J (2001) The Aspergillus niger D-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose. Eur J Biochem 268:5414–5423

    Article  Google Scholar 

  • Vanderveen P, Ruijter GJG, Visser J (1995) An extreme creA mutation in Aspergillus nidulans has severe effects on D-glucose utilization. Microbiology 141:2301–2306

    Article  CAS  Google Scholar 

  • Vautard G, Cotton P, Fevre M (1999) The glucose repressor CRE1 of Sclerotinia sclerotiorum is functionally related to CreA from Aspergillus nidulans but not to the Mig proteins from Saccharomyces cerevisiae. FEBS Lett 453:54–58

    Article  PubMed  CAS  Google Scholar 

  • Vautard-Mey G, Fevre M (2000) Mutation of a putative AMPK phosphorylation site abolishes the repressor activity but not the nuclear targeting of the fungal glucose regulator CRE1. Curr Genet 37:328–332

    Article  PubMed  CAS  Google Scholar 

  • Vautard-Mey G, Cotton P, Fevre M (1999) Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum. Eur J Biochem 266:252–259

    Article  PubMed  CAS  Google Scholar 

  • Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustori in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci USA 98:8133–8138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang B, Guo G, Wang C, Lin Y, Wang X, Zhao M, Guo Y, He M, Zhang Y, Pan L (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38:5075–5087

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Watabe J (2010) Aspergillus oryzae in which function of gene encoding creC is deficient and which can be utilized for production of seasoning, and utilization thereof. Japanese Patent JP2010075131

    Google Scholar 

  • Wei HK, Vienken R, Weber R, Bunting S, Requena N, Fischer R (2004) A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet Biol 41:148–156

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64:3–16

    Article  PubMed  CAS  Google Scholar 

  • Wong KH, Hynes MJ, Davis MA (2008) Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 7:917–925

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou G, Lü J, Li Z, Li J, Wang M, Qu Y, Xiao L, Qin S, Zhao H, Xia R, Fang X (2012) Enhanced cellulase production of Penicillium decumbens by knocking out creB encoding a deubiquitination enzyme. Chin J Biotechnol 28:959–972

    CAS  Google Scholar 

  • Ziv C, Gorovits R, Yarden O (2008) Carbon source affects PKA-dependent polarity of Neurospora crassa in a CRE-1-dependent and independent manner. Fungal Genet Biol 45:103–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kelly, J.M. (2016). 13 The Regulation of Carbon Metabolism in Filamentous Fungi. In: Hoffmeister, D. (eds) Biochemistry and Molecular Biology. The Mycota, vol III. Springer, Cham. https://doi.org/10.1007/978-3-319-27790-5_13

Download citation

Publish with us

Policies and ethics