Advertisement

5-Oxo-ETE and Inflammation

  • William S. PowellEmail author
  • Joshua Rokach
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) is a potent proinflammatory 5-lipoxygenase product. It is formed by oxidation of 5S-HETE by the highly selective dehydrogenase 5-HEDH, which is expressed in both inflammatory and structural cells. Its synthesis is regulated by the availability of the obligate cofactor NADP+ and is favored by conditions such as oxidative stress and activation of the respiratory burst in phagocytic cells. The actions of 5-oxo-ETE are mediated by the Gi-coupled OXE receptor that is found in many species but not in rodents. This receptor is highly expressed on eosinophils and basophils, and is also found on neutrophils, monocytes/macrophages, and various cancer cell lines. Because of its potent actions on eosinophils 5-oxo-ETE may be an important proinflammatory mediator in asthma and other eosinophilic diseases. 5-Oxo-ETE may also be involved in cancer, as it promotes the survival and proliferation of a number of cancer cell lines and rescues these cells from apoptosis induced by inhibitors of the 5-LO pathway. OXE receptor antagonists, which are currently under development, may be useful therapeutic agents in asthma and other eosinophilic disorders and possibly also in cancer.

Keywords

5-HETE 5-HODE 5-Hydroxyeicosanoid dehydrogenase 5-Lipoxygenase 5-Oxo-ETE 5-Oxo-ODE Antagonists Asthma Basophils Cancer Chemoattractants Eosinophils G protein-coupled receptors Glutathione GM-CSF Inflammation Mead acid Monocytes NADP+ Neutrophils OXE receptor OXER1 Oxidative stress PC3 prostate tumor cells Platelets Polyunsaturated fatty acids Respiratory burst Sebaleic acid Structure-activity relationships Transcellular biosynthesis 

Abbreviations

12S-HETE

12S-Hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid

5-HEDH

5-Hydroxyeicosanoid dehydrogenase

5-LO

5-Lipoxygenase

5-oxo-12S-HETE

5-Oxo,12S-hydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid

5-oxo-15S-HETE

5-Oxo,15S-hydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid

5-oxo-20-HETE

5-Oxo-20-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid

5-oxo-EPE

5-Oxo-6E,8Z,11Z,14Z,17Z -eicosapentaenoic acid

5-oxo-ETE

5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid

5-oxo-ETrE

5-Oxo-6E,8Z,11Z-eicosatrienoic acid

5-oxo-ODE

5-Oxo-6E,8Z-octadecadienoic acid

5S,12S-diHETE

5S,12S-Dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid

5S-HEPE

5S-Hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid

5S-HETE

5S-Hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid

5S-HETrE

5S-Hydroxy-6E,8Z,11Z-eicosatrienoic

5S-HODE

5S-Hydroxy-6E,8Z-octadecadienoic acid

5S-HpETE

5S-Hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid

AA

Arachidonic acid

DAG

Diacyl glycerol

EPA

5Z,8Z,11Z,14Z,17Z-Eicosapentaenoic acid

FLAP

5-Lipoxygenase activating protein

FOG7

5-Oxo-7-glutathionyl-8,11,14-eicosatrienoic acid

GM-CSF

Granulocyte-macrophage colony stimulating factor

HCA

Hydroxyl-carboxylic acid receptor

LT

Leukotriene

MAP kinases

Mitogen-activated protein kinases

MMP-9

Matrix metalloproteinase-9

PAF

Platelet-activating factor

PI3K

Phosphoinositide 3-kinase

PKC

Protein kinase C

PLC

Phospholipase C

PUFA

Polyunsaturated fatty acid

TNF-α

Tumor necrosis factor-α

uPAR

Urokinase-type plasminogen activator receptor

Notes

Acknowledgements

Work done in the authors’ laboratories was supported by grants from the Canadian Institutes of Health Research (WSP, MOP-6254 and PPP-99490), the Quebec Heart and Stroke Foundation (WSP), the American Asthma Foundation (JR, 12–0049), and the National Heart, Lung, and Blood Institute (JR, R01HL081873). The Meakins-Christie Laboratories-MUHC-RI are supported in part by a Center grant from Le Fond de la Recherche en Santé du Québec as well as by the JT Costello Memorial Research Fund. JR also wishes to acknowledge the National Science Foundation for the AMX-360 (grant no. CHE-90-13145) and Bruker 400 MHz (grant no. CHE-03-42251) NMR instruments. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health.

References

  1. 1.
    Borgeat P, Hamberg M, Samuelsson B (1976) Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem 251:7816–7820PubMedGoogle Scholar
  2. 2.
    Borgeat P, Samuelsson B (1979) Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate in formation of dihydroxy acids. Proc Natl Acad Sci USA 76:3213–3217PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Murphy RC, Hammarström S, Samuelsson B (1979) Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 76:4275–4279PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Serhan CN, Hamberg M, Samuelsson B (1984) Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci USA 81(17):5335–5339PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Powell WS, Gravelle F (1988) Metabolism of 6-trans isomers of leukotriene B4 to dihydro products by human polymorphonuclear leukocytes. J Biol Chem 263:2170–2177PubMedGoogle Scholar
  6. 6.
    Powell WS, Gravelle F, Gravel S (1992) Metabolism of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid and other 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human polymorphonuclear leukocytes. J Biol Chem 267:19233–19241PubMedGoogle Scholar
  7. 7.
    O’Flaherty JT, Jacobson D, Redman J (1988) Mechanism involved in the mobilization of neutrophil calcium by 5-hydroxyeicosatetraenoate. J Immunol 140:4323–4328PubMedGoogle Scholar
  8. 8.
    Powell WS, Gravel S, MacLeod RJ, Mills E, Hashefi M (1993) Stimulation of human neutrophils by 5-oxo-6,8,11,14- eicosatetraenoic acid by a mechanism independent of the leukotriene B4 receptor. J Biol Chem 268:9280–9286PubMedGoogle Scholar
  9. 9.
    O’Flaherty JT, Cordes J, Redman J, Thomas MJ (1993) 5-Oxo-eicosatetraenoate, a potent human neutrophil stimulus. Biochem Biophys Res Commun 192:129–134PubMedCrossRefGoogle Scholar
  10. 10.
    Patel P, Cossette C, Anumolu JR, Erlemann KR, Grant GE, Rokach J, Powell WS (2009) Substrate selectivity of 5-hydroxyeicosanoid dehydrogenase and its inhibition by 5-hydroxy-delta(6)-long-chain fatty acids. J Pharmacol Exp Ther 329(1):335–341PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cossette C, Patel P, Anumolu JR, Sivendran S, Lee GJ, Gravel S, Graham FD, Lesimple A, Mamer OA, Rokach J, Powell WS (2008) Human neutrophils convert the sebum-derived polyunsaturated fatty acid sebaleic acid to a potent granulocyte chemoattractant. J Biol Chem 283(17):11234–11243PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Powell WS, Gravel S, Gravelle F (1995) Formation of a 5-oxo metabolite of 5,8,11,14,17-eicosapentaenoic acid and its effects on human neutrophils and eosinophils. J Lipid Res 36(12):2590–2598PubMedGoogle Scholar
  13. 13.
    Powell WS, Gravel S, Khanapure SP, Rokach J (1999) Biological inactivation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human platelets. Blood 93(3):1086–1096PubMedGoogle Scholar
  14. 14.
    Erlemann KR, Cossette C, Grant GE, Lee GJ, Patel P, Rokach J, Powell WS (2007) Regulation of 5-hydroxyeicosanoid dehydrogenase activity in monocytic cells. Biochem J 403(1):157–165PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Graham FD, Erlemann KR, Gravel S, Rokach J, Powell WS (2009) Oxidative stress-induced changes in pyridine nucleotides and chemoattractant 5-lipoxygenase products in aging neutrophils. Free Radic Biol Med 47(1):62–71PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yamazaki M, Sasaki M (1975) Formation of prostaglandin E1 from 15-ketoprostaglandin E1 by guniea pig lung 15-hydroxyprostaglandin dehydrogenase. Biochem Biophys Res Commun 66(1):255–261PubMedCrossRefGoogle Scholar
  17. 17.
    Powell WS, Chung D, Gravel S (1995) 5-Oxo-6,8,11,14-eicosatetraenoic acid is a potent stimulator of human eosinophil migration. J Immunol 154:4123–4132PubMedGoogle Scholar
  18. 18.
    Zhang Y, Styhler A, Powell WS (1996) Synthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid by human monocytes and lymphocytes. J Leukoc Biol 59(6):847–854PubMedGoogle Scholar
  19. 19.
    Zimpfer U, Dichmann S, Termeer CC, Simon JC, Schroder JM, Norgauer J (2000) Human dendritic cells are a physiological source of the chemotactic arachidonic acid metabolite 5-oxo-eicosatetraenoic acid. Inflamm Res 49(11):633–638PubMedCrossRefGoogle Scholar
  20. 20.
    Grant GE, Gravel S, Guay J, Patel P, Mazer BD, Rokach J, Powell WS (2011) 5-oxo-ETE is a major oxidative stress-induced arachidonate metabolite in B lymphocytes. Free Radic Biol Med 50(10):1297–1304. doi: 10.1016/j.freeradbiomed.2011.02.010, S0891-5849(11)00100-6 [pii]PubMedCrossRefGoogle Scholar
  21. 21.
    Erlemann KR, Cossette C, Gravel S, Lesimple A, Lee GJ, Saha G, Rokach J, Powell WS (2007) Airway epithelial cells synthesize the lipid mediator 5-oxo-ETE in response to oxidative stress. Free Radic Biol Med 42(5):654–664PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Erlemann KR, Cossette C, Gravel S, Stamatiou PB, Lee GJ, Rokach J, Powell WS (2006) Metabolism of 5-hydroxy-6,8,11,14-eicosatetraenoic acid by human endothelial cells. Biochem Biophys Res Commun 350(1):151–156PubMedCrossRefGoogle Scholar
  23. 23.
    Cossette C, Walsh SE, Kim S, Lee GJ, Lawson JA, Bellone S, Rokach J, Powell WS (2007) Agonist and antagonist effects of 15R-prostaglandin (PG) D2 and 11-methylene-PGD2 on human eosinophils and basophils. J Pharmacol Exp Ther 320(1):173–179PubMedCrossRefGoogle Scholar
  24. 24.
    Grant GE, Rubino S, Gravel S, Wang X, Patel P, Rokach J, Powell WS (2011) Enhanced formation of 5-oxo-6,8,11,14-eicosatetraenoic acid by cancer cells in response to oxidative stress, docosahexaenoic acid and neutrophil-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid. Carcinogenesis 32(6):822–828. doi: 10.1093/carcin/bgr044, bgr044 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Folco G, Murphy RC (2006) Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacol Rev 58(3):375–388PubMedCrossRefGoogle Scholar
  26. 26.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212PubMedCrossRefGoogle Scholar
  27. 27.
    Hamberg M (1975) Decomposition of unsaturated fatty acid hydroperoxides by hemoglobin: structures of major products of 13L-hydroperoxy-9,11-octadecadienoic acid. Lipids 10(2):87–92PubMedCrossRefGoogle Scholar
  28. 28.
    Hall LM, Murphy RC (1998) Electrospray mass spectrometric analysis of 5-hydroperoxy and 5-hydroxyeicosatetraenoic acids generated by lipid peroxidation of red blood cell ghost phospholipids. J Am Soc Mass Spectrom 9(5):527–532PubMedCrossRefGoogle Scholar
  29. 29.
    Khaselev N, Murphy RC (2000) Peroxidation of arachidonate containing plasmenyl glycerophosphocholine: facile oxidation of esterified arachidonate at carbon-5. Free Radic Biol Med 29(7):620–632. doi: 10.1016/S0891-5849(00)00361-0 [pii]PubMedCrossRefGoogle Scholar
  30. 30.
    Zarini S, Murphy RC (2003) Biosynthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid from 5-hydroperoxyeicosatetraenoic acid in the murine macrophage. J Biol Chem 278:11190–11196PubMedCrossRefGoogle Scholar
  31. 31.
    Bryant RW, She HS, Ng KJ, Siegel MI (1986) Modulation of the 5-lipoxygenase activity of MC-9 mast cells: activation by hydroperoxides. Prostaglandins 32(4):615–627PubMedCrossRefGoogle Scholar
  32. 32.
    Bui P, Imaizumi S, Beedanagari SR, Reddy ST, Hankinson O (2011) Human CYP2S1 metabolizes cyclooxygenase- and lipoxygenase-derived eicosanoids. Drug Metab Dispos 39(2):180–190. doi: 10.1124/dmd.110.035121, dmd.110.035121 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Schwenk U, Schröder JM (1995) 5-Oxo-eicosanoids are potent eosinophil chemotactic factors—functional characterization and structural requirements. J Biol Chem 270:15029–15036PubMedCrossRefGoogle Scholar
  34. 34.
    Powell WS, MacLeod RJ, Gravel S, Gravelle F, Bhakar A (1996) Metabolism and biologic effects of 5-oxoeicosanoids on human neutrophils. J Immunol 156(1):336–342PubMedGoogle Scholar
  35. 35.
    Hevko JM, Bowers RC, Murphy RC (2001) Synthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid and identification of novel omega-oxidized metabolites in the mouse macrophage. J Pharmacol Exp Ther 296(2):293–305PubMedGoogle Scholar
  36. 36.
    Berhane K, Ray AA, Khanapure SP, Rokach J, Powell WS (1998) Calcium/calmodulin-dependent conversion of 5-oxoeicosanoids to 6, 7- dihydro metabolites by a cytosolic olefin reductase in human neutrophils. J Biol Chem 273(33):20951–20959PubMedCrossRefGoogle Scholar
  37. 37.
    Hevko JM, Murphy RC (2002) Formation of murine macrophage-derived 5-oxo-7-glutathionyl-8,11,14- eicosatrienoic acid (FOG7) is catalyzed by leukotriene C4 synthase. J Biol Chem 277(9):7037–7043PubMedCrossRefGoogle Scholar
  38. 38.
    Stenson WF, Parker CW (1979) Metabolism of arachidonic acid in ionophore-stimulated neutrophils. Esterification of a hydroxylated metabolite into phospholipids. J Clin Invest 64:1457–1465PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    O’Flaherty JT, Taylor JS, Thomas MJ (1998) Receptors for the 5-oxo class of eicosanoids in neutrophils. J Biol Chem 273(49):32535–32541PubMedCrossRefGoogle Scholar
  40. 40.
    O’Flaherty JT, Kuroki M, Nixon AB, Wijkander J, Yee E, Lee SL, Smitherman PK, Wykle RL, Daniel LW (1996) 5-Oxo-eicosatetraenoate is a broadly active, eosinophil- selective stimulus for human granulocytes. J Immunol 157(1):336–342PubMedGoogle Scholar
  41. 41.
    Czech W, Barbisch M, Tenscher K, Schopf E, Schröder JM, Norgauer J (1997) Chemotactic 5-oxo-eicosatetraenoic acids induce oxygen radical production, Ca2+-mobilization, and actin reorganization in human eosinophils via a pertussis toxin-sensitive G-protein. J Invest Dermatol 108(1):108–112PubMedCrossRefGoogle Scholar
  42. 42.
    Jones CE, Holden S, Tenaillon L, Bhatia U, Seuwen K, Tranter P, Turner J, Kettle R, Bouhelal R, Charlton S, Nirmala NR, Jarai G, Finan P (2003) Expression and characterization of a 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor highly expressed on human eosinophils and neutrophils. Mol Pharmacol 63(3):471–477PubMedCrossRefGoogle Scholar
  43. 43.
    Norgauer J, Barbisch M, Czech W, Pareigis J, Schwenk U, Schröder JM (1996) Chemotactic 5-oxo-icosatetraenoic acids activate a unique pattern of neutrophil responses - analysis of phospholipid metabolism, intracellular Ca2+ transients, actin reorganization, superoxide-anion production and receptor up-regulation. Eur J Biochem 236(3):1003–1009PubMedCrossRefGoogle Scholar
  44. 44.
    O’Flaherty JT, Kuroki M, Nixon AB, Wijkander J, Yee E, Lee SL, Smitherman PK, Wykle RL, Daniel LW (1996) 5-oxo-eicosanoids and hematopoietic cytokines cooperate in stimulating neutrophil function and the mitogen-activated protein kinase pathway. J Biol Chem 271(30):17821–17828PubMedCrossRefGoogle Scholar
  45. 45.
    Powell WS, Gravel S, Halwani F, Hii CS, Huang ZH, Tan AM, Ferrante A (1997) Effects of 5-oxo-6,8,11,14-eicosatetraenoic acid on expression of CD11b, actin polymerization and adherence in human neutrophils. J Immunol 159:2952–2959PubMedGoogle Scholar
  46. 46.
    Powell WS, Gravel S, Halwani F (1999) 5-oxo-6,8,11,14-eicosatetraenoic acid is a potent stimulator of L- selectin shedding, surface expression of CD11b, actin polymerization, and calcium mobilization in human eosinophils. Am J Respir Cell Mol Biol 20(1):163–170PubMedCrossRefGoogle Scholar
  47. 47.
    Sturm GJ, Schuligoi R, Sturm EM, Royer JF, Lang-Loidolt D, Stammberger H, Amann R, Peskar BA, Heinemann A (2005) 5-Oxo-6,8,11,14-eicosatetraenoic acid is a potent chemoattractant for human basophils. J Allergy Clin Immunol 116(5):1014–1019PubMedCrossRefGoogle Scholar
  48. 48.
    Urasaki T, Takasaki J, Nagasawa T, Ninomiya H (2001) Pivotal role of 5-lipoxygenase in the activation of human eosinophils: platelet-activating factor and interleukin-5 induce CD69 on eosinophils through the 5-lipoxygenase pathway. J Leukoc Biol 69(1):105–112PubMedGoogle Scholar
  49. 49.
    Monneret G, Boumiza R, Gravel S, Cossette C, Bienvenu J, Rokach J, Powell WS (2005) Effects of prostaglandin D2 and 5-lipoxygenase products on the expression of CD203c and CD11b by basophils. J Pharmacol Exp Ther 312(2):627–634PubMedCrossRefGoogle Scholar
  50. 50.
    Sozzani S, Zhou D, Locati M, Bernasconi S, Luini W, Mantovani A, O’Flaherty JT (1996) Stimulating properties of 5-oxo-eicosanoids for human monocytes: synergism with monocyte chemotactic protein-1 and -3. J Immunol 157(10):4664–4671PubMedGoogle Scholar
  51. 51.
    Iikura M, Suzukawa M, Yamaguchi M, Sekiya T, Komiya A, Yoshimura-Uchiyama C, Nagase H, Matsushima K, Yamamoto K, Hirai K (2005) 5-Lipoxygenase products regulate basophil functions: 5-oxo-ETE elicits migration, and leukotriene B(4) induces degranulation. J Allergy Clin Immunol 116(3):578–585PubMedCrossRefGoogle Scholar
  52. 52.
    O’Flaherty JT, Cordes JF, Lee SL, Samuel M, Thomas MJ (1994) Chemical and biological characterization of oxo-eicosatetraenoic acids. Biochim Biophys Acta 1201(3):505–515PubMedCrossRefGoogle Scholar
  53. 53.
    Powell WS, Ahmed S, Gravel S, Rokach J (2001) Eotaxin and RANTES enhance 5-oxo-6,8,11,14-eicosatetraenoic acid- induced eosinophil chemotaxis. J Allergy Clin Immunol 107(2):272–278PubMedCrossRefGoogle Scholar
  54. 54.
    Sun FF, Crittenden NJ, Czuk CI, Taylor BM, Stout BK, Johnson HG (1991) Biochemical and functional differences between eosinophils from animal species and man. J Leukoc Biol 50:140–150PubMedGoogle Scholar
  55. 55.
    Schwenk U, Morita E, Engel R, Schröder JM (1992) Identification of 5-oxo-15-hydroxy-6,8,11,13-eicosatetraenoic acid as a novel and potent human eosinophil chemotactic eicosanoid. J Biol Chem 267:12482–12488PubMedGoogle Scholar
  56. 56.
    Stamatiou PB, Chan CC, Monneret G, Ethier D, Rokach J, Powell WS (2004) 5-Oxo-6,8,11,14-eicosatetraenoic acid stimulates the release of the eosinophil survival factor granulocyte-macrophage colony stimulating factor from monocytes. J Biol Chem 279:28159–28164PubMedCrossRefGoogle Scholar
  57. 57.
    Gore V, Gravel S, Cossette C, Patel P, Chourey S, Ye Q, Rokach J, Powell WS (2014) Inhibition of 5-oxo-6,8,11,14-eicosatetraenoic acid-induced activation of neutrophils and eosinophils by novel indole OXE receptor antagonists. J Med Chem 57(2):364–377. doi: 10.1021/jm401292m PubMedCrossRefGoogle Scholar
  58. 58.
    Hosoi T, Koguchi Y, Sugikawa E, Chikada A, Ogawa K, Tsuda N, Suto N, Tsunoda S, Taniguchi T, Ohnuki T (2002) Identification of a novel eicosanoid receptor coupled to Gi/o. J Biol Chem 277:31459–31465PubMedCrossRefGoogle Scholar
  59. 59.
    Takeda S, Yamamoto A, Haga T (2002) Identification of a G protein-coupled receptor for 5-oxo-eicosatetraenoic acid. Biomed Res Tokyo 23(2):101–108CrossRefGoogle Scholar
  60. 60.
    Jones OT, Jones SA, Hancock JT, Topley N (1993) Composition and organization of the NADPH oxidase of phagocytes and other cells. Biochem Soc Trans 21:343–346PubMedCrossRefGoogle Scholar
  61. 61.
    Bäck M, Powell WS, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE (2014) International Union of Basic and Clinical Pharmacology. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR review 7. Br J Pharmacol. doi: 10.1111/bph.12665 PubMedPubMedCentralGoogle Scholar
  62. 62.
    Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP (2011) International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B). Pharmacol Rev 63(2):269–290. doi: 10.1124/pr.110.003301, pr.110.003301 [pii]PubMedCrossRefGoogle Scholar
  63. 63.
    Guo Y, Zhang W, Giroux C, Cai Y, Ekambaram P, Dilly AK, Hsu A, Zhou S, Maddipati KR, Liu J, Joshi S, Tucker SC, Lee MJ, Honn KV (2011) Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem 286(39):33832–33840. doi: 10.1074/jbc.M110.216564, M110.216564 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    O’Flaherty JT, Rogers LC, Paumi CM, Hantgan RR, Thomas LR, Clay CE, High K, Chen YQ, Willingham MC, Smitherman PK, Kute TE, Rao A, Cramer SD, Morrow CS (2005) 5-Oxo-ETE analogs and the proliferation of cancer cells. Biochim Biophys Acta 1736(3):228–236PubMedCrossRefGoogle Scholar
  65. 65.
    Sundaram S, Ghosh J (2006) Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival. Biochem Biophys Res Commun 339(1):93–98PubMedCrossRefGoogle Scholar
  66. 66.
    Cooke M, Di CH, Maloberti P, Cornejo MF (2013) Expression and function of OXE receptor, an eicosanoid receptor, in steroidogenic cells. Mol Cell Endocrinol 371(1–2):71–78. doi: 10.1016/j.mce.2012.11.003, S0303-7207(12)00495-9 [pii]PubMedCrossRefGoogle Scholar
  67. 67.
    Enyedi B, Kala S, Nikolich-Zugich T, Niethammer P (2013) Tissue damage detection by osmotic surveillance. Nat Cell Biol 15(9):1123–1130. doi: 10.1038/ncb2818, ncb2818 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    O’Flaherty JT, Taylor JS, Kuroki M (2000) The coupling of 5-oxo-eicosanoid receptors to heterotrimeric G proteins. J Immunol 164(6):3345–3352PubMedCrossRefGoogle Scholar
  69. 69.
    Hosoi T, Sugikawa E, Chikada A, Koguchi Y, Ohnuki T (2005) TG1019/OXE, a galpha(i/o)-protein-coupled receptor, mediates 5-oxo-eicosatetraenoic acid-induced chemotaxis. Biochem Biophys Res Commun 334(4):987–995PubMedCrossRefGoogle Scholar
  70. 70.
    Langlois A, Chouinard F, Flamand N, Ferland C, Rola-Pleszczynski M, Laviolette M (2009) Crucial implication of protein kinase C (PKC)-delta, PKC-zeta, ERK-1/2, and p38 MAPK in migration of human asthmatic eosinophils. J Leukoc Biol 85(4):656–663PubMedCrossRefGoogle Scholar
  71. 71.
    Sarveswaran S, Ghosh J (2013) OXER1, a G protein-coupled oxoeicosatetraenoid receptor, mediates the survival-promoting effects of arachidonate 5-lipoxygenase in prostate cancer cells. Cancer Lett 336(1):185–195. doi: 10.1016/j.canlet.2013.04.027, S0304-3835(13)00361-3 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Schratl P, Sturm EM, Royer JF, Sturm GJ, Lippe IT, Peskar BA, Heinemann A (2006) Hierarchy of eosinophil chemoattractants: role of p38 mitogen-activated protein kinase. Eur J Immunol 36(9):2401–2409PubMedCrossRefGoogle Scholar
  73. 73.
    Blättermann S, Peters L, Ottersbach PA, Bock A, Konya V, Weaver CD, Gonzalez A, Schroder R, Tyagi R, Luschnig P, Gab J, Hennen S, Ulven T, Pardo L, Mohr K, Gutschow M, Heinemann A, Kostenis E (2012) A biased ligand for OXE-R uncouples Gα and Gβγ signaling within a heterotrimer. Nat Chem Biol 8(7):631–638. doi: 10.1038/nchembio.962, nchembio.962 [pii]PubMedCrossRefGoogle Scholar
  74. 74.
    Konya V, Blattermann S, Jandl K, Platzer W, Ottersbach PA, Marsche G, Gutschow M, Kostenis E, Heinemann A (2014) A biased non-galphai OXE-R antagonist demonstrates that galphai protein subunit is not directly involved in neutrophil, eosinophil, and monocyte activation by 5-Oxo-ETE. J Immunol 192(10):4774–4782. doi: 10.4049/jimmunol.1302013, jimmunol.1302013 [pii]PubMedCrossRefGoogle Scholar
  75. 75.
    Patel P, Cossette C, Anumolu JR, Gravel S, Lesimple A, Mamer OA, Rokach J, Powell WS (2008) Structural requirements for activation of the 5-oxo-6E,8Z, 11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) receptor: identification of a mead acid metabolite with potent agonist activity. J Pharmacol Exp Ther 325(2):698–707PubMedCrossRefGoogle Scholar
  76. 76.
    Evans JF, Nathaniel DJ, Zamboni RJ, Ford-Hutchinson AW (1985) Leukotriene A3. A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase. J Biol Chem 260(20):10966–10970PubMedGoogle Scholar
  77. 77.
    Patel P, Anumolu JR, Powell WS, Rokach J (2011) 5-Oxo-15-HETE: total synthesis and bioactivity. Bioorg Med Chem Lett 21(6):1857–1860. doi: 10.1016/j.bmcl.2011.01.032, S0960-894X(11)00045-X [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Powell WS, Rokach J (2013) The eosinophil chemoattractant 5-oxo-ETE and the OXE receptor. Prog Lipid Res 52(4):651–665. doi: 10.1016/j.plipres.2013.09.001, S0163-7827(13)00053-2 [pii]PubMedCrossRefGoogle Scholar
  79. 79.
    Gore V, Patel P, Chang CT, Sivendran S, Kang N, Ouedraogo YP, Gravel S, Powell WS, Rokach J (2013) 5-Oxo-ETE receptor antagonists. J Med Chem 56(9):3725–3732. doi: 10.1021/jm400480j PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Patel P, Reddy CN, Gore V, Chourey S, Ye Q, Ouedraogo YP, Gravel S, Powell WS, Rokach J (2014) Two potent OXE-R antagonists: assignment of stereochemistry. ACS Med Chem Lett 5(7):815–819PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schroeder JT (2009) Basophils beyond effector cells of allergic inflammation. Adv Immunol 101:123–161. doi: 10.1016/S0065-2776(08)01004-3, S0065-2776(08)01004-3 [pii]PubMedCrossRefGoogle Scholar
  82. 82.
    Muro S, Hamid Q, Olivenstein R, Taha R, Rokach J, Powell WS (2003) 5-oxo-6,8,11,14-eicosatetraenoic acid induces the infiltration of granulocytes into human skin. J Allergy Clin Immunol 112(4):768–774PubMedCrossRefGoogle Scholar
  83. 83.
    Dallaire MJ, Ferland C, Page N, Lavigne S, Davoine F, Laviolette M (2003) Endothelial cells modulate eosinophil surface markers and mediator release. Eur Respir J 21(6):918–924PubMedCrossRefGoogle Scholar
  84. 84.
    Guilbert M, Ferland C, Bosse M, Flamand N, Lavigne S, Laviolette M (1999) 5-Oxo-6,8,11,14-eicosatetraenoic acid induces important eosinophil transmigration through basement membrane components: comparison of normal and asthmatic eosinophils. Am J Respir Cell Mol Biol 21(1):97–104PubMedCrossRefGoogle Scholar
  85. 85.
    Langlois A, Ferland C, Tremblay GM, Laviolette M (2006) Montelukast regulates eosinophil protease activity through a leukotriene-independent mechanism. J Allergy Clin Immunol 118(1):113–119PubMedCrossRefGoogle Scholar
  86. 86.
    Almishri W, Cossette C, Rokach J, Martin JG, Hamid Q, Powell WS (2005) Effects of prostaglandin D2, 15-deoxy-Δ12,14-prostaglandin J2, and selective DP1 and DP2 receptor agonists on pulmonary infiltration of eosinophils in Brown Norway rats. J Pharmacol Exp Ther 313(1):64–69PubMedCrossRefGoogle Scholar
  87. 87.
    Stamatiou P, Hamid Q, Taha R, Yu W, Issekutz TB, Rokach J, Khanapure SP, Powell WS (1998) 5-Oxo-ETE induces pulmonary eosinophilia in an integrin-dependent manner in Brown Norway rats. J Clin Invest 102(12):2165–2172PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Cossette C, Gravel S, Reddy CN, Gore V, Chourey S, Ye Q, Snyder NW, Mesaros CA, Blair IA, Lavoie JP, Reinero CR, Rokach J, Powell WS (2015) Biosynthesis and actions of 5-oxoeicosatetraenoic acid (5-oxo-ETE) on feline granulocytes. Biochem Pharmacol. doi: 10.1016/j.bcp.2015.05.009 PubMedGoogle Scholar
  89. 89.
    Murray JJ, Tonnel AB, Brash AR, Roberts LJ, Gosset P, Workman R, Capron A, Oates JA (1986) Release of prostaglandin D2 into human airways during acute antigen challenge. N Engl J Med 315(13):800–804PubMedCrossRefGoogle Scholar
  90. 90.
    Ghosh J, Myers CE (1998) Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci USA 95(22):13182–13187PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ghosh J, Myers CE (1997) Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun 235(2):418–423PubMedCrossRefGoogle Scholar
  92. 92.
    Sarveswaran S, Ghosh R, Morisetty S, Ghosh J (2015) MK591, a second generation leukotriene biosynthesis inhibitor, prevents invasion and induces apoptosis in the bone-invading C4-2B human prostate cancer cells: implications for the treatment of castration-resistant, bone-metastatic prostate cancer. PLoS One 10(4), e0122805. doi: 10.1371/journal.pone.0122805 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Avis I, Hong SH, Martinez A, Moody T, Choi YH, Trepel J, Das R, Jett M, Mulshine JL (2001) Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J 15(11):2007–2009PubMedGoogle Scholar
  94. 94.
    Edderkaoui M, Hong P, Vaquero EC, Lee JK, Fischer L, Friess H, Buchler MW, Lerch MM, Pandol SJ, Gukovskaya AS (2005) Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase. Am J Physiol Gastrointest Liver Physiol 289(6):G1137–G1147PubMedCrossRefGoogle Scholar
  95. 95.
    Hammamieh R, Sumaida D, Zhang X, Das R, Jett M (2007) Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism. BMC Cancer 7:138PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Moody TW, Leyton J, Martinez A, Hong S, Malkinson A, Mulshine JL (1998) Lipoxygenase inhibitors prevent lung carcinogenesis and inhibit non-small cell lung cancer growth. Exp Lung Res 24(4):617–628PubMedCrossRefGoogle Scholar
  97. 97.
    Datta K, Biswal SS, Kehrer JP (1999) The 5-lipoxygenase-activating protein (FLAP) inhibitor, MK886, induces apoptosis independently of FLAP. Biochem J 340(Pt 2):371–375PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Fischer AS, Metzner J, Steinbrink SD, Ulrich S, Angioni C, Geisslinger G, Steinhilber D, Maier TJ (2010) 5-Lipoxygenase inhibitors induce potent anti-proliferative and cytotoxic effects in human tumour cells independently of suppression of 5-lipoxygenase activity. Br J Pharmacol 161(4):936–949. doi: 10.1111/j.1476-5381.2010.00915.x PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Sarveswaran S, Thamilselvan V, Brodie C, Ghosh J (2011) Inhibition of 5-lipoxygenase triggers apoptosis in prostate cancer cells via down-regulation of protein kinase C-epsilon. Biochim Biophys Acta 1813(12):2108–2117. doi: 10.1016/j.bbamcr.2011.07.015, S0167-4889(11)00214-X [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Romano M, Catalano A, Nutini M, D’Urbano E, Crescenzi C, Claria J, Libner R, Davi G, Procopio A (2001) 5-lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J 15(13):2326–2336. doi: 10.1096/fj.01-0150com, 15/13/2326 [pii]PubMedCrossRefGoogle Scholar
  101. 101.
    Gupta S, Srivastava M, Ahmad N, Sakamoto K, Bostwick DG, Mukhtar H (2001) Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 91(4):737–743PubMedCrossRefGoogle Scholar
  102. 102.
    Hassan S, Carraway RE (2006) Involvement of arachidonic acid metabolism and EGF receptor in neurotensin-induced prostate cancer PC3 cell growth. Regul Pept 133(1–3):105–114PubMedCrossRefGoogle Scholar
  103. 103.
    Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, Dimina D, Ochkur SI, O’Neill K, Colbert D, Lombari TR, Constant S, McGarry MP, Lee JJ, Lee NA (2006) Pivotal advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol 79(6):1131–1139PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sarveswaran S, Chakraborty D, Chitale D, Sears R, Ghosh J (2015) Inhibition of 5-lipoxygenase selectively triggers disruption of c-Myc signaling in prostate cancer cells. J Biol Chem 290(8):4994–5006. doi: 10.1074/jbc.M114.599035 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Marleau S, Fortin C, Poubelle PE, Borgeat P (1993) In vivo desensitization to leukotriene B4 (LTB4) in the rabbit. Inhibition of LTB4-induced neutropenia during intravenous infusion of LTB4. J Immunol 150:206–213PubMedGoogle Scholar
  106. 106.
    Bowers R, Cool C, Murphy RC, Tuder RM, Hopken MW, Flores SC, Voelkel NF (2004) Oxidative stress in severe pulmonary hypertension. Am J Respir Crit Care Med 169(6):764–769PubMedCrossRefGoogle Scholar
  107. 107.
    Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36 (Web Server issue):W465–W469. doi: 10.1093/nar/gkn180, gkn180 [pii]Google Scholar
  108. 108.
    Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci USA 107(4):1660–1665. doi: 10.1073/pnas.0907342107, 0907342107 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kanaoka Y, Maekawa A, Austen KF (2013) Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 288(16):10967–10972. doi: 10.1074/jbc.C113.453704, C113.453704 [pii]PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Meakins-Christie LaboratoriesMcGill University Health Centre Research Institute, Centre for Translational BiologyMontrealCanada
  2. 2.Department of ChemistryClaude Pepper Institute, Florida Institute of TechnologyMelbourneUSA

Personalised recommendations