The Physiology and Pathophysiology of Lipoxygenases in the Skin

  • Peter KriegEmail author
  • Gerhard Fürstenberger
Part of the Progress in Inflammation Research book series (PIR)


The skin is the primary barrier between the external environment and the internal milieu of the host protecting the body from physical and chemical insults and injury and preventing the loss of water. An active lipid metabolism and fatty acid-derived oxylipins are crucially involved in the structural integrity and functionality of the skin. Among them are lipoxygenases (LOX)-derived autacoids generated by an abundant and diverse cutaneous LOX metabolism. LOX products fulfill substantial functions in epithelial tissue homeostasis, inflammation as the general skin response to external damage, wound healing, and disease-related processes including numerous inflammatory skin conditions and the development of skin cancer. Recent results point to a critical role of a distinct LOX pathway in the development and maintenance of the epidermal barrier. This review focuses on the activities and mechanisms of actions of individual LOX-derived oxylipins, and the dysregulation of the corresponding LOX enzymes in diseased skin.


Lipoxygenases Skin homeostasis Skin barrier function Skin inflammation Skin cancer Ichthyosis Psoriasis Atopic dermatitis Ceramides Essential fatty acids 



Autosomal recessive congenital ichthyoses


Cornified cell envelope


Corneocyte lipid envelope


Dendritic cell(s)




Epidermis-type 12-lipoxygenase


Essential fatty acid(s)


Epidermis-type lipoxygenase-3


Esterified ω-hydroxyacylsphingosine(s)


(Free) fatty acid(s)


Hydro(pero)xyeicosatetraenoic acid


Hydro(pero)xyoctadecadienoic acid

HxA (B)

hepoxilin A (B)


Leukocyte-type 12-lipoxygenase








Platelet-type 12-lipoxygenase


Polymerase chain reaction


Polymorphonuclear neutrophils


Peroxisome Proliferator-activated receptor


Polyunsaturated fatty acids


Reverse Transcriptase


Transepidermal water loss


12-O-tetradecanoyl phorbol-13-acetate


  1. 1.
    Hamberg M, Svensson J, Samuelsson B (1974) Prostaglandin endoperoxides. A new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 71:3824–3828PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hammarström S, Hamberg M, Samuelsson B et al (1975) Increased concentrations of nonesterified arachidonic acid, 12L-hydroxy-5,8,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2alpha in epidermis of psoriasis. Proc Nal Acad Sci USA 72:5130–5134CrossRefGoogle Scholar
  3. 3.
    Krieg P, Fürstenberger G (2014) The role of lipoxygenases in epidermis. Biochim Biophys Acta 1841:390–400PubMedCrossRefGoogle Scholar
  4. 4.
    Munoz-Garcia A, Thomas CP, Keeney DS et al (2014) The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta 1841:401–408PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111:5866–5898PubMedCrossRefGoogle Scholar
  6. 6.
    Talbot SF, Atkins PC, Goetzl EJ et al (1985) Accumulation of leukotriene C4 and histamine in human allergic skin reactions. J Clin Invest 76:650–656PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fogh K, Herlin T, Kragballe K (1989) Eicosanoids in skin of patients with atopic dermatitis: prostaglandin E2 and leukotriene B4 are present in biologically active concentrations. J Allergy Clin Immunol 83:450–455PubMedCrossRefGoogle Scholar
  8. 8.
    Fogh K, Kiil J, Herlin T et al (1987) Heterogeneous distribution of lipoxygenase products in psoriatic skin lesions. Arch Dermatol Res 279:504–511PubMedCrossRefGoogle Scholar
  9. 9.
    Eberhard J, Jepsen S, Albers HK et al (2000) Quantitation of arachidonic acid metabolites in small tissue biopsies by reversed-phase high-performance liquid chromatography. Anal Biochem 280:258–263PubMedCrossRefGoogle Scholar
  10. 10.
    Luo M, Lee S, Brock TG (2003) Leukotriene synthesis by epithelial cells. Histol Histopathol 18:587–595PubMedGoogle Scholar
  11. 11.
    Janssen-Timmen U, Vickers P, Wittig U et al (1995) Expression of 5-lipoxygenase in differentiating human skin keratinocytes. Proc Natl Acad Sci USA 92:6966–6970PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Spanbroek R, Stark HJ, Janssen Timmen U et al (1998) 5-Lipoxygenase expression in Langerhans cells of normal human epidermis. Proc Natl Acad Sci USA 95:663–668PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kowal-Bielecka O, Distler O, Neidhart M et al (2001) Evidence of 5-lipoxygenase overexpression in the skin of patients with systemic sclerosis: a newly identified pathway to skin inflammation in systemic sclerosis. Arthritis Rheum 44:1865–1875PubMedCrossRefGoogle Scholar
  14. 14.
    Alestas T, Ganceviciene R, Fimmel S et al (2006) Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med (Berl) 84:75–87CrossRefGoogle Scholar
  15. 15.
    Heidt M, Fürstenberger G, Vogel S et al (2000) Diversity of mouse lipoxygenases: identification of a subfamily of epidermal isozymes exhibiting a differentiation-dependent mRNA expression pattern. Lipids 35:701–707PubMedCrossRefGoogle Scholar
  16. 16.
    Iversen L, Kragballe K, Ziboh VA (1997) Significance of leukotriene-A4 hydrolase in the pathogenesis of psoriasis. Skin Pharmacol 10:169–177PubMedCrossRefGoogle Scholar
  17. 17.
    Iversen L, Kristensen P, Nissen JB et al (1995) Purification and characterization of leukotriene A4 hydrolase from human epidermis. FEBS Lett 358:316–322PubMedCrossRefGoogle Scholar
  18. 18.
    Funk CD, Chen XS, Johnson EN et al (2002) Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 68–69:303–312PubMedCrossRefGoogle Scholar
  19. 19.
    Doepping S, Funk CD, Habenicht AJ et al (2007) Selective 5-lipoxygenase expression in Langerhans cells and impaired dendritic cell migration in 5-LO-deficient mice reveal leukotriene action in skin. J Invest Dermatol 127:1692–1700PubMedCrossRefGoogle Scholar
  20. 20.
    Ottaviani M, Camera E, Picardo M (2010) Lipid mediators in acne. Mediators Inflamm 2010:858176PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Iizuka Y, Yokomizo T, Terawaki K et al (2005) Characterization of a mouse second leukotriene B4 receptor, mBLT2: BLT2-dependent ERK activation and cell migration of primary mouse keratinocytes. J Biol Chem 280:24816–24823PubMedCrossRefGoogle Scholar
  22. 22.
    Kragballe K, Voorhees JJ (1985) Arachidonic acid in psoriasis. Pathogenic role and pharmacological regulation. Acta Derm Venereol Suppl Stockh 120:12–17PubMedGoogle Scholar
  23. 23.
    Reusch MK, Wastek GJ (1989) Human keratinocytes in vitro have receptors for leukotriene B4. Acta Derm Venereol 69:429–431PubMedGoogle Scholar
  24. 24.
    Morelli JG, Hake SS, Murphy RC et al (1992) Leukotriene B4-induced human melanocyte pigmentation and leukotriene C4-induced human melanocyte growth are inhibited by different isoquinolinesulfonamides. J Invest Dermatol 98:55–58PubMedCrossRefGoogle Scholar
  25. 25.
    Serhan CN, Petasis NA (2011) Resolvins and protectins in inflammation resolution. Chem Rev 111:5922–5943PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kühn H, O’donnell VB (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res 45:334–356PubMedCrossRefGoogle Scholar
  27. 27.
    Brash AR, Boeglin WE, Chang MS (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA 94:6148–6152PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bürger F, Krieg P, Marks F et al (2000) Positional- and stereo-selectivity of fatty acid oxygenation catalysed by mouse (12S)-lipoxygenase isoenzymes. Biochem J 348:329–335PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mcdonnell M, Davis W Jr, Li H et al (2001) Characterization of the murine epidermal 12/15-lipoxygenase. Prostaglandins Other Lipid Mediat 63:93–107PubMedCrossRefGoogle Scholar
  30. 30.
    Camp RDR, Mallet AI, Woollard PM et al (1983) The identification of hydroxy fatty acids in psoriatic skin. Prostaglandins 26:431–447PubMedCrossRefGoogle Scholar
  31. 31.
    Nugteren DH, Kivits GA (1987) Conversion of linoleic acid and arachidonic acid by skin epidermal lipoxygenases. Biochim Biophys Acta 921:135–141PubMedCrossRefGoogle Scholar
  32. 32.
    Burrall BA, Cheung M, Chiu A et al (1988) Enzymatic properties of the 15-lipoxygenase of human cultured keratinocytes. J Invest Dermatol 91:294–297PubMedCrossRefGoogle Scholar
  33. 33.
    Baer AN, Costello PB, Green FA (1991) Stereospecificity of the products of the fatty acid oxygenases derived from psoriatic scales. J Lipid Res 32:341–347PubMedGoogle Scholar
  34. 34.
    Henneicke-Von Zepelin HH, Schroder JM, Smid P et al (1991) Metabolism of arachidonic acid by human epidermal cells depends upon maturational stage. J Invest Dermatol 97:291–297PubMedCrossRefGoogle Scholar
  35. 35.
    Yoo H, Jeon B, Jeon MS et al (2008) Reciprocal regulation of 12- and 15-lipoxygenases by UV-irradiation in human keratinocytes. FEBS Lett 582:3249–3253PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao H, Richards-Smith B, Baer AN et al (1995) Lipoxygenase mRNA in cultured human epidermal and oral keratinocytes. J Lipid Res 36:2444–2449PubMedGoogle Scholar
  37. 37.
    Gulliksson M, Brunnstrom A, Johannesson M et al (2007) Expression of 15-lipoxygenase type-1 in human mast cells. Biochim Biophys Acta 1771:1156–1165PubMedCrossRefGoogle Scholar
  38. 38.
    Krieg P, Kinzig A, Ress-Loschke M et al (1995) 12-Lipoxygenase isoenzymes in mouse skin tumor development. Mol Carcinog 14:118–129PubMedCrossRefGoogle Scholar
  39. 39.
    Fischer SM, Hagerman RA, Li-Stiles E et al (1996) Arachidonate has protumor-promoting action that is inhibited by linoleate in mouse skin carcinogenesis. J Nutr 126:1099S–1104SPubMedGoogle Scholar
  40. 40.
    Shureiqi I, Jiang W, Zuo X et al (2003) The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proc Natl Acad Sci USA 100:9968–9973PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Hattori T, Obinata H, Ogawa A et al (2008) G2A plays proinflammatory roles in human keratinocytes under oxidative stress as a receptor for 9-hydroxyoctadecadienoic acid. J Invest Dermatol 128:1123–1133PubMedCrossRefGoogle Scholar
  42. 42.
    Funk CD, Keeney DS, Oliw EH et al (1996) Functional expression and cellular localization of a mouse epidermal lipoxygenase. J Biol Chem 271:23338–23344PubMedCrossRefGoogle Scholar
  43. 43.
    Sun D, Elsea SH, Patel PI et al (1998) Cloning of a human “epidermal-type” 12-lipoxygenase-related gene and chromosomal localization to 17p13. Cytogenet Cell Genet 81:79–82PubMedCrossRefGoogle Scholar
  44. 44.
    Hamberg M, Samuelsson B (1974) Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Holtzman MJ, Turk J, Pentland A (1989) A regiospecific monooxygenase with novel stereopreference is the major pathway for arachidonic acid oxygenation in isolated epidermal cells. J Clin Invest 84:1446–1453PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Funk CD, Furci L, Fitzgerald GA (1990) Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase. Proc Natl Acad Sci USA 87:5638–5642PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hussain H, Shornick LP, Shannon VR et al (1994) Epidermis contains platelet-type 12-lipoxygenase that is overexpressed in germinal layer keratinocytes in psoriasis. Am J Physiol 266:C243–C253PubMedGoogle Scholar
  48. 48.
    Takahashi Y, Reddy GR, Ueda N et al (1993) Arachidonate 12-lipoxygenase of platelet-type in human epidermal cells. J Biol Chem 268:16443–16448PubMedGoogle Scholar
  49. 49.
    Johnson EN, Nanney LB, Virmani J et al (1999) Basal transepidermal water loss is increased in platetel-type 12-lipoxygenase deficient mice. J Invest Dermatol 112:861–865PubMedCrossRefGoogle Scholar
  50. 50.
    Kim S, Choi IF, Quante JR et al (2009) p63 directly induces expression of Alox12, a regulator of epidermal barrier formation. Exp Dermatol 18:1016–1021PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chan CC, Duhamel L, Ford-Hutchison A (1985) Leukotriene B4 and 12-hydroxyeicosatetraenoic acid stimulate epidermal proliferation in vivo in the guinea pig. J Invest Dermatol 85:333–334PubMedCrossRefGoogle Scholar
  52. 52.
    Kragballe K, Fallon JD (1986) Increased aggregation and arachidonic acid transformation by psoriatic platelets: evidence that platelet-derived 12-hydroxy-eicosatetraenoic acid increases keratinocyte DNA synthesis in vitro. Arch Dermatol Res 278:449–453PubMedCrossRefGoogle Scholar
  53. 53.
    Hagerman RA, Fischer SM, Locniskar MF (1997) Effect of 12-O-tetradecanoylphorbol-13-acetate on inhibition of expression of keratin 1 mRNA in mouse keratinocytes mimicked by 12(S)-hydroxyeicosatetraenoic acid. Mol Carcinog 19:157–164PubMedCrossRefGoogle Scholar
  54. 54.
    Fürstenberger G, Marks F, Krieg P (2002) Arachidonate 8(S)-lipoxygenase. Prostaglandins Other Lipid Mediat 68–69:235–243PubMedCrossRefGoogle Scholar
  55. 55.
    Jisaka M, Kim RB, Boeglin WE et al (1997) Molecular cloning and functional expression of a phorbol ester-inducible 8S-lipoxygenase from mouse skin. J Biol Chem 272:24410–24416PubMedCrossRefGoogle Scholar
  56. 56.
    Krieg P, Kinzig A, Heidt M et al (1998) cDNA cloning of a 8-lipoxygenase and a novel epidermis-type lipoxygenase from phorbol ester-treated mouse skin. Biochim Biophys Acta 1391:7–12PubMedCrossRefGoogle Scholar
  57. 57.
    Qiao N, Takahashi Y, Takamatsu H et al (1999) Leukotriene A synthase activity of purified mouse skin arachidonate 8-lipoxygenase expressed in escherichia coli. Biochim Biophys Acta 1438:131–139PubMedCrossRefGoogle Scholar
  58. 58.
    Shappell SB, Keeney DS, Zhang J et al (2001) 15-Lipoxygenase-2 expression in benign and neoplastic sebaceous glands and other cutaneous adnexa. J Invest Dermatol 117:36–43PubMedCrossRefGoogle Scholar
  59. 59.
    Setsu N, Matsuura H, Hirakawa S et al (2006) Interferon-gamma-induced 15-lipoxygenase-2 expression in normal human epidermal keratinocytes and a pathogenic link to psoriasis vulgaris. Eur J Dermatol 16:141–145PubMedGoogle Scholar
  60. 60.
    Fürstenberger G, Hagedorn H, Jacobi T et al (1991) Characterization of an 8-lipoxygenase activity induced by the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate in mouse skin in vivo. J Biol Chem 266:15738–15745PubMedGoogle Scholar
  61. 61.
    Muga SJ, Thuillier P, Pavone A et al (2000) 8S-lipoxygenase products activate peroxisome proliferator- activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth Differ 11:447–454PubMedGoogle Scholar
  62. 62.
    Bhatia B, Tang S, Yang P et al (2005) Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells. Oncogene 24:3583–3595PubMedCrossRefGoogle Scholar
  63. 63.
    Tang DG, Bhatia B, Tang S et al (2007) 15-lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size). Prostaglandins Other Lipid Mediat 82:135–146PubMedCrossRefGoogle Scholar
  64. 64.
    Flores AM, Li L, Mchugh NG et al (2005) Enzyme association with PPARgamma: evidence of a new role for 15-lipoxygenase type 2. Chem Biol Interact 151:121–132PubMedCrossRefGoogle Scholar
  65. 65.
    Schweiger D, Fürstenberger G, Krieg P (2007) Inducible expression of 15-lipoxygenase-2 and 8-lipoxygenase inhibits cell growth via common signaling pathways. J Lipid Res 48:553–564PubMedCrossRefGoogle Scholar
  66. 66.
    Woollard PM (1986) Stereochemical difference between 12-hydroxy-5,8,10,14-eicosatetraenoic acid in platelets and psoriatic lesions. Biochem Biophys Res Commun 136:169–176PubMedCrossRefGoogle Scholar
  67. 67.
    Boeglin WE, Kim RB, Brash AR (1998) A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression. Proc Natl Acad Sci USA 95:6744–6749PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zheng Y, Yin H, Boeglin WE et al (2011) Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J Biol Chem 286:24046–24056PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kinzig A, Heidt M, Fürstenberger G et al (1999) cDNA cloning, genomic structure, and chromosomal localization of a novel murine epidermis-type lipoxygenase. Genomics 58:158–164PubMedCrossRefGoogle Scholar
  70. 70.
    Krieg P, Marks F, Fürstenberger G (2001) A gene cluster encoding human epidermis-type lipoxygenases at chromosome 17p13.1: cloning, physical mapping, and expression. Genomics 73:323–330PubMedCrossRefGoogle Scholar
  71. 71.
    Zheng Y, Brash AR (2010) Dioxygenase activity of epidermal lipoxygenase-3 unveiled: typical and atypical features of its catalytic activity with natural and synthetic polyunsaturated fatty acids. J Biol Chem 285:39866–39875PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yu Z, Schneider C, Boeglin WE et al (2003) The lipoxygenase gene ALOXE3 implicated in skin differentiation encodes a hydroperoxide isomerase. Proc Natl Acad Sci USA 100:9162–9167PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yu Z, Schneider C, Boeglin WE et al (2006) Human and mouse eLOX3 have distinct substrate specificities: implications for their linkage with lipoxygenases in skin. Arch Biochem Biophys 455:188–196PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gregus AM, Dumlao DS, Wei SC et al (2013) Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia. FASEB J 27:1939–1949PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Krieg P, Rosenberger S, De Juanes S et al (2013) Aloxe3 knockout mice reveal a function of epidermal lipoxygenase-3 as hepoxilin synthase and its pivotal role in barrier formation. J Invest Dermatol 133:172–180PubMedCrossRefGoogle Scholar
  76. 76.
    Schneider C, Keeney DS, Boeglin WE et al (2001) Detection and cellular localization of 12R-lipoxygenase in human tonsils. Arch Biochem Biophys 386:268–274PubMedCrossRefGoogle Scholar
  77. 77.
    Epp N, Fürstenberger G, Müller K et al (2007) 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol 177:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sun D, Mcdonnell M, Chen XS et al (1998) Human 12(R)-lipoxygenase and the mouse ortholog: molecular cloning, expression, and gene chromosomal assignment. J Biol Chem 50:33540–33547CrossRefGoogle Scholar
  79. 79.
    Jobard F, Lefevre C, Karaduman A et al (2002) Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1. Hum Mol Genet 11:107–113PubMedCrossRefGoogle Scholar
  80. 80.
    Oji V, Tadini G, Akiyama M et al (2010) Revised nomenclature and classification of inherited ichthyoses: results of the First Ichthyosis Consensus Conference in Soreze 2009. J Am Acad Dermatol 63:607–641PubMedCrossRefGoogle Scholar
  81. 81.
    Elias PM, Williams ML, Feingold KR (2012) Abnormal barrier function in the pathogenesis of ichthyosis: therapeutic implications for lipid metabolic disorders. Clin Dermatol 30:311–322PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Feingold KR, Elias PM (2014) Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim Biophys Acta 1841:280–294PubMedCrossRefGoogle Scholar
  83. 83.
    Akiyama M, Sakai K, Yanagi T et al (2010) Partially disturbed lamellar granule secretion in mild congenital ichthyosiform erythroderma with ALOX12B mutations. Br J Dermatol 163:201–204PubMedGoogle Scholar
  84. 84.
    Eckl KM, De Juanes S, Kurtenbach J et al (2009) Molecular analysis of 250 patients with autosomal recessive congenital ichthyosis: evidence for mutation hotspots in ALOXE3 and allelic heterogeneity in ALOX12B. J Invest Dermatol 129:1421–1428PubMedCrossRefGoogle Scholar
  85. 85.
    Eckl KM, Krieg P, Küster W et al (2005) Mutation spectrum and functional analysis of epidermis-type lipoxygenases in patients with autosomal recessive congenital ichthyosis. Hum Mutat 26:351–361PubMedCrossRefGoogle Scholar
  86. 86.
    Harting M, Brunetti-Pierri N, Chan CS et al (2008) Self-healing collodion membrane and mild nonbullous congenital ichthyosiform erythroderma due to 2 novel mutations in the ALOX12B gene. Arch Dermatol 144:351–356PubMedCrossRefGoogle Scholar
  87. 87.
    Israeli S, Goldberg I, Fuchs-Telem D et al (2013) Non-syndromic autosomal recessive congenital ichthyosis in the Israeli population. Clin Exp Dermatol 38(8):911–916PubMedCrossRefGoogle Scholar
  88. 88.
    Lesueur F, Bouadjar B, Lefevre C et al (2007) Novel mutations in ALOX12B in patients with autosomal recessive congenital ichthyosis and evidence for genetic heterogeneity on chromosome 17p13. J Invest Dermatol 127:829–834PubMedCrossRefGoogle Scholar
  89. 89.
    Rodriguez-Pazos L, Ginarte M, Fachal L et al (2011) Analysis of TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 in autosomal recessive congenital ichthyosis from Galicia (NW Spain): evidence of founder effects. Br J Dermatol 165:906–911PubMedCrossRefGoogle Scholar
  90. 90.
    Vahlquist A, Bygum A, Ganemo A et al (2010) Genotypic and clinical spectrum of self-improving collodion ichthyosis: ALOX12B, ALOXE3, and TGM1 mutations in Scandinavian patients. J Invest Dermatol 130:438–443PubMedCrossRefGoogle Scholar
  91. 91.
    Yu Z, Schneider C, Boeglin WE et al (2005) Mutations associated with a congenital form of ichthyosis (NCIE) inactivate the epidermal lipoxygenases 12R-LOX and eLOX3. Biochim Biophys Acta 1686(3):238–247PubMedCrossRefGoogle Scholar
  92. 92.
    De Juanes S, Epp N, Latzko S et al (2009) Development of an ichthyosiform phenotype in Alox12b-deficient mouse skin transplants. J Invest Dermatol 129:1429–1436PubMedCrossRefGoogle Scholar
  93. 93.
    Brash AR, Yu Z, Boeglin WE et al (2007) The hepoxilin connection in the epidermis. FEBS J 274:3494–3502PubMedCrossRefGoogle Scholar
  94. 94.
    Gronert K (2008) Lipid autacoids in inflammation and injury responses: a matter of privilege. Mol Interv 8:28–35PubMedCrossRefGoogle Scholar
  95. 95.
    Oberyszyn TM (2007) Inflammation and wound healing. Front Biosci 12:2993–2999PubMedCrossRefGoogle Scholar
  96. 96.
    Nicolaou A, Masoodi M, Gledhill K et al (2012) The eicosanoid response to high dose UVR exposure of individuals prone and resistant to sunburn. Photochem Photobiol Sci 11:371–380PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang G, Liu X, Wang C et al (2013) Resolution of PMA-induced skin inflammation involves interaction of IFN-gamma and ALOX15. Mediators Inflamm 2013:930124PubMedPubMedCentralGoogle Scholar
  98. 98.
    Rhodes LE, Gledhill K, Masoodi M et al (2009) The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. FASEB J 23:3947–3956PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kendall AC, Nicolaou A (2013) Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 52:141–164PubMedCrossRefGoogle Scholar
  100. 100.
    Fogh K, Kragballe K (2000) Eicosanoids in inflammatory skin diseases. Prostaglandins Other Lipid Mediat 63:43–54PubMedCrossRefGoogle Scholar
  101. 101.
    Hui Y, Cheng Y, Smalera I et al (2004) Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure. Circulation 110:3360–3366PubMedCrossRefGoogle Scholar
  102. 102.
    Fretland DJ, Widomski DL, Zemaitis JM et al (1990) Inflammation of guinea pig dermis. Effects of leukotriene B4 receptor antagonist, SC-41930. Inflammation 14:727–739PubMedCrossRefGoogle Scholar
  103. 103.
    Dowd PM, Black AK, Woollard PW et al (1987) Cutaneous responses to 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) and 5,12-dihydroxyeicosatetraenoic acid (leukotriene B4) in psoriasis and normal human skin. Arch Dermatol Res 279:427–434PubMedCrossRefGoogle Scholar
  104. 104.
    Wollard PM, Cunnigham FM, Murphy GM et al (1989) A comparison of the proinflammatory effects of 12(R)- and 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid in human skin. Prostaglandins 38:465–471PubMedCrossRefGoogle Scholar
  105. 105.
    Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Prieto P, Cuenca J, Traves PG et al (2010) Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ 17:1179–1188PubMedCrossRefGoogle Scholar
  107. 107.
    Norling LV, Spite M, Yang R et al (2011) Cutting edge: humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing. J Immunol 186:5543–5547PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Brogliato AR, Moor AN, Kesl SL et al (2014) Critical role of 5-lipoxygenase and heme oxygenase-1 in wound healing. J Invest Dermatol 134:1436–1445PubMedCrossRefGoogle Scholar
  109. 109.
    Hanselmann C, Mauch C, Werner S (2001) Haem oxygenase-1: a novel player in cutaneous wound repair and psoriasis? Biochem J 353:459–466PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Uderhardt S, Herrmann M, Oskolkova OV et al (2012) 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity 36:834–846PubMedCrossRefGoogle Scholar
  111. 111.
    Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–873PubMedCrossRefGoogle Scholar
  112. 112.
    Yoo H, Kim SJ, Kim Y et al (2007) Insulin-like growth factor-II regulates the 12-lipoxygenase gene expression and promotes cell proliferation in human keratinocytes via the extracellular regulatory kinase and phosphatidylinositol 3-kinase pathways. Int J Biochem Cell Biol 39:1248–1259PubMedCrossRefGoogle Scholar
  113. 113.
    Gudjonsson JE, Ding J, Li X et al (2009) Global gene expression analysis reveals evidence for decreased lipid biosynthesis and increased innate immunity in uninvolved psoriatic skin. J Invest Dermatol 129:2795–2804PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Black AK, Camp RD, Mallet AI et al (1990) Pharmacologic and clinical effects of lonapalene (RS 43179), a 5-lipoxygenase inhibitor, in psoriasis. J Invest Dermatol 95:50–54PubMedCrossRefGoogle Scholar
  115. 115.
    Boguniewicz M, Leung DY (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242:233–246PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Oyoshi MK, He R, Li Y et al (2012) Leukotriene B4-driven neutrophil recruitment to the skin is essential for allergic skin inflammation. Immunity 37:747–758PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hua Z, Fei H, Mingming X (2006) Evaluation and interference of serum and skin lesion levels of leukotrienes in patients with eczema. Prostaglandins Leukot Essent Fatty Acids 75:51–55PubMedCrossRefGoogle Scholar
  118. 118.
    Ruzicka T, Simmet T, Peskar BA et al (1986) Skin levels of arachidonic acid-derived inflammatory mediators and histamine in atopic dermatitis and psoriasis. J Invest Dermatol 86:105–108PubMedCrossRefGoogle Scholar
  119. 119.
    Andoh T, Kuraishi Y (1998) Intradermal leukotriene B4, but not prostaglandin E2, induces itch-associated responses in mice. Eur J Pharmacol 353:93–96PubMedCrossRefGoogle Scholar
  120. 120.
    Andoh T, Saito A, Kuraishi Y (2009) Leukotriene B(4) mediates sphingosylphosphorylcholine-induced itch-associated responses in mouse skin. J Invest Dermatol 129:2854–2860PubMedCrossRefGoogle Scholar
  121. 121.
    Tsuji F, Aono H, Tsuboi T et al (2010) Role of leukotriene B4 in 5-lipoxygenase metabolite- and allergy-induced itch-associated responses in mice. Biol Pharm Bull 33:1050–1053PubMedCrossRefGoogle Scholar
  122. 122.
    Sampson AP, Thomas RU, Costello JF et al (1992) Enhanced leukotriene synthesis in leukocytes of atopic and asthmatic subjects. Br J Clin Pharmacol 33:423–430PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Nettis E, D’erasmo M, Di Leo E et al (2010) The employment of leukotriene antagonists in cutaneous diseases belonging to allergological field. Mediators Inflamm 2010, 628171PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Rubin P, Mollison KW (2007) Pharmacotherapy of diseases mediated by 5-lipoxygenase pathway eicosanoids. Prostaglandins Other Lipid Mediat 83:188–197PubMedCrossRefGoogle Scholar
  125. 125.
    Krieg T, Takehara K (2009) Skin disease: a cardinal feature of systemic sclerosis. Rheumatology (Oxford) 48(Suppl 3):iii14–iii18Google Scholar
  126. 126.
    Chwiesko-Minarowska S, Kowal K, Bielecki M et al (2012) The role of leukotrienes in the pathogenesis of systemic sclerosis. Folia Histochem Cytobiol 50:180–185PubMedCrossRefGoogle Scholar
  127. 127.
    Mensing H, Czarnetzki BM (1984) Leukotriene B4 induces in vitro fibroblast chemotaxis. J Invest Dermatol 82:9–12PubMedCrossRefGoogle Scholar
  128. 128.
    Vannella KM, Mcmillan TR, Charbeneau RP et al (2007) Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J Immunol 179:7883–7890PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Andoh T, Haza S, Saito A et al (2011) Involvement of leukotriene B4 in spontaneous itch-related behaviour in NC mice with atopic dermatitis-like skin lesions. Exp Dermatol 20:894–898PubMedCrossRefGoogle Scholar
  130. 130.
    Kronke G, Reich N, Scholtysek C et al (2012) The 12/15-lipoxygenase pathway counteracts fibroblast activation and experimental fibrosis. Ann Rheum Dis 71:1081–1087PubMedCrossRefGoogle Scholar
  131. 131.
    Catalano A, Procopio A (2005) New aspects on the role of lipoxygenases in cancer progression. Histol Histopathol 20:969–975PubMedGoogle Scholar
  132. 132.
    Fürstenberger G, Krieg P, Müller-Decker K et al (2006) What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? Int J Cancer 119:2247–2254PubMedCrossRefGoogle Scholar
  133. 133.
    Schneider C, Pozzi A (2011) Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Rev 30:277–294PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Steele VE, Holmes CA, Hawk ET et al (1999) Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev 8:467–483PubMedGoogle Scholar
  135. 135.
    Jiang H, Yamamoto S, Kato R (1994) Inhibition of two-stage skin carcinogenesis as well as complete skin carcinogenesis by oral administration of TMK688, a potent lipoxygenase inhibitor. Carcinogenesis 15:807–812PubMedCrossRefGoogle Scholar
  136. 136.
    Fürstenberger G, Csuk-Glanzer BI, Marks F et al (1994) Phorbol ester-induced leukotriene biosynthesis and tumor promotion in mouse epidermis. Carcinogenesis 15:2823–2827PubMedCrossRefGoogle Scholar
  137. 137.
    Fegn L, Wang Z (2009) Topical chemoprevention of skin cancer in mice, using combined inhibitors of 5-lipoxygenase and cyclo-oxygenase-2. J Laryngol Otol 123:880–884PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Li N, Sood S, Wang S et al (2005) Overexpression of 5-lipoxygenase and cyclooxygenase 2 in hamster and human oral cancer and chemopreventive effects of zileuton and celecoxib. Clin Cancer Res 11:2089–2096PubMedCrossRefGoogle Scholar
  139. 139.
    Sun Z, Sood S, Li N et al (2006) Involvement of the 5-lipoxygenase/leukotriene A4 hydrolase pathway in 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch, and inhibition of carcinogenesis by its inhibitors. Carcinogenesis 27:1902–1908PubMedCrossRefGoogle Scholar
  140. 140.
    Virmani J, Johnson EN, Klein-Szanto AJ et al (2001) Role of ‘platelet-type’ 12-lipoxygenase in skin carcinogenesis. Cancer Lett 162:161–165PubMedCrossRefGoogle Scholar
  141. 141.
    Pidgeon GP, Lysaght J, Krishnamoorthy S et al (2007) Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 26:503–524PubMedCrossRefGoogle Scholar
  142. 142.
    Piao YS, Du YC, Oshima H et al (2008) Platelet-type 12-lipoxygenase accelerates tumor promotion of mouse epidermal cells through enhancement of cloning efficiency. Carcinogenesis 29:440–447PubMedCrossRefGoogle Scholar
  143. 143.
    Raso E, Dome B, Somlai B et al (2004) Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Res 14:245–250PubMedCrossRefGoogle Scholar
  144. 144.
    Winer I, Normolle DP, Shureiqi I et al (2002) Expression of 12-lipoxygenase as a biomarker for melanoma carcinogenesis. Melanoma Res 12:429–434PubMedCrossRefGoogle Scholar
  145. 145.
    Müller K, Siebert M, Heidt M et al (2002) Modulation of epidermal tumor development caused by targeted overexpression of epidermis-type 12S-lipoxygenase. Cancer Res 62:4610–4616PubMedGoogle Scholar
  146. 146.
    Bürger F, Krieg P, Kinzig A et al (1999) Constitutive expression of 8-lipoxygenase in papillomas and clastogenic effects of lipoxygenase-derived arachidonic acid metabolites in keratinocytes. Mol Carcinog 24:108–117PubMedCrossRefGoogle Scholar
  147. 147.
    Kim E, Rundhaug JE, Benavides F et al (2005) An antitumorigenic role for murine 8S-lipoxygenase in skin carcinogenesis. Oncogene 24:1174–1187PubMedCrossRefGoogle Scholar
  148. 148.
    Nair J, Fürstenberger G, Bürger F et al (2000) Promutagenic etheno-DNA adducts in multistage mouse skin carcinogenesis: correlation with lipoxygenase-catalyzed arachidonic acid metabolism. Chem Res Toxicol 13:703–709PubMedCrossRefGoogle Scholar
  149. 149.
    Wang D, Chen S, Feng Y et al (2006) Reduced expression of 15-lipoxygenase 2 in human head and neck carcinomas. Tumour Biol 27:261–273PubMedCrossRefGoogle Scholar
  150. 150.
    Shappell SB, Boeglin WE, Olson SJ et al (1999) 15-lipoxygenase-2 (15-LOX-2) is expressed in benign prostatic epithelium and reduced in prostate adenocarcinoma. Am J Pathol 155:235–245PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Siebert M, Krieg P, Lehmann WD et al (2001) Enzymatic characterization of epidermis-derived 12-lipoxygenase isozymes. Biochem J 355:97–104PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Molecular Diagnostics of Oncogenic InfectionsGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations