Advertisement

Catalytic Multiplicity of 15-Lipoxygenase-1 Orthologs (ALOX15) of Different Species

  • Hartmut KühnEmail author
  • Felix Karst
  • Dagmar Heydeck
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in bacteria and eucarya and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as an enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 orthologs have extensively been characterized and their biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 orthologs of various mammalian species (rabbit, pig, human, nonhuman primates, mouse, rat). Because of space limitations the biological roles of ALOX15 orthologs have not been addressed since this topic has extensively been covered in a previous review (Kuhn et al., Biochim Biophys Acta 1851:308–330, 2015).

Keywords

Eicosanoids Leukotrienes Eoxins Hydroperoxidase Reaction mechanism 

List of Non-standard Abbreviations

LOX

Lipoxygenase

AA

Arachidonic acid

13S-H(p)ODE

(13S,9Z,11E)-13-hydro(pero)xyoctadeca-9,11-dienoic acid

15S-H(p)ETE

(15S,5Z,8Z,11Z,13E)-15-hydro(pero)xyeicosa-5,8,11,13-tetraenoic acid

12S-H(p)ETE

(12S,5Z,8Z,10E,14Z)-12-hydro(pero)xyeicosa-5,8,10,14-tetraenoic acid

SAXS

Small angle X-ray scattering

References

  1. 1.
    Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111:5866–5898PubMedCrossRefGoogle Scholar
  2. 2.
    Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’Donnell VB, Kuhn H, Walther M (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503:161–174PubMedCrossRefGoogle Scholar
  3. 3.
    Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170PubMedCrossRefGoogle Scholar
  4. 4.
    Kuhn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D (2014) Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 57C:13–39Google Scholar
  6. 6.
    Hamberg M, Samuelsson B (1974) Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Schewe T, Halangk W, Hiebsch C, Rapoport SM (1975) A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett 60:149–152PubMedCrossRefGoogle Scholar
  8. 8.
    Radmark O, Werz O, Steinhilber D, Samuelsson B (2015) 5-lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta 1851:331–339PubMedCrossRefGoogle Scholar
  9. 9.
    Kanaoka Y, Boyce JA (2014) Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res 6:288–295PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171–1176PubMedCrossRefGoogle Scholar
  11. 11.
    Sun D, Funk CD (1996) Disruption of 12/15-lipoxygenase expression in peritoneal macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J Biol Chem 271:24055–24062PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson EN, Brass LF, Funk CD (1998) Increased platelet sensitivity to ADP in mice lacking platelet-type 12-lipoxygenase. Proc Natl Acad Sci USA 95:3100–3105PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chen XS, Sheller JR, Johnson EN, Funk CD (1994) Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature 372:179–182PubMedCrossRefGoogle Scholar
  14. 14.
    Epp N, Fürstenberger G, Müller K, de Juanes S, Leitges M, Hausser I, Thieme F, Liebisch G, Schmitz G, Krieg P (2007) 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol 177:173–182PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Krieg P, Rosenberger S, de Juanes S, Latzko S, Hou J, Dick A, Kloz U, van der Hoeven F, Hausser I, Esposito I et al (2013) Aloxe3 knockout mice reveal a function of epidermal lipoxygenase-3 as hepoxilin synthase and its pivotal role in barrier formation. J Invest Dermatol 133:172–180PubMedCrossRefGoogle Scholar
  16. 16.
    Krieg P, Furstenberger G (2014) The role of lipoxygenases in epidermis. Biochim Biophys Acta 1841:390–400PubMedCrossRefGoogle Scholar
  17. 17.
    Borngraber S, Kuban RJ, Anton M, Kuhn H (1996) Phenylalanine 353 is a primary determinant for the positional specificity of mammalian 15-lipoxygenases. J Mol Biol 264:1145–1153PubMedCrossRefGoogle Scholar
  18. 18.
    Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Haas U, Raschperger E, Hamberg M, Samuelsson B, Tryggvason K, Haeggstrom JZ (2011) Targeted knock-down of a structurally atypical zebrafish 12S-lipoxygenase leads to severe impairment of embryonic development. Proc Natl Acad Sci USA 108:20479–20484PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jansen C, Hofheinz K, Vogel R, Roffeis J, Anton M, Reddanna P, Kuhn H, Walther M (2011) Stereocontrol of arachidonic acid oxygenation by vertebrate lipoxygenases: newly cloned zebrafish lipoxygenase 1 does not follow the Ala-versus-Gly concept. J Biol Chem 286:37804–37812PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Adel S, Kakularam KR, Horn T, Reddanna P, Kuhn H, Heydeck D (2015) Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens. Arch Biochem Biophys 565:17–24PubMedCrossRefGoogle Scholar
  22. 22.
    Gilbert NC, Rui Z, Neau DB, Waight MT, Bartlett SG, Boeglin WE, Brash AR, Newcomer ME (2012) Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J 26:3222–3229PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Adel S, Hofheinz K, Heydeck D, Kuhn H, Häfner AK (2014) Phosphorylation mimicking mutations of ALOX5 orthologs of different vertebrates do not alter reaction specificities of the enzymes. Biochim Biophys Acta 1841:1460–1466CrossRefGoogle Scholar
  24. 24.
    Hansen J, Garreta A, Benincasa M, Fuste MC, Busquets M, Manresa A (2013) Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol 97:4737–4747PubMedCrossRefGoogle Scholar
  25. 25.
    Busquets M, Carpena X, Fita I, Fusté C, Garreta A, Manresa Á (2011) Crystallization of the lipoxygenase of Pseudomonas aeruginosa 42A2, evolution and phylogenetic study of the subfamilies of the lipoxygenases. Transworld Research Network, Trivandrum, IndiaGoogle Scholar
  26. 26.
    Lu X, Zhang J, Liu S, Zhang D, Xu Z, Wu J, Li J, Du G, Chen J (2013) Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli. Appl Microbiol Biotechnol 97:5793–5800PubMedCrossRefGoogle Scholar
  27. 27.
    Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ (2004) The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci USA 101:2135–2139PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Xu Z, Liu S, Lu X, Rao S, Kang Z, Li J, Wang M, Chen J (2014) Thermal inactivation of a recombinant lipoxygenase from Pseudomonas aeruginosa BBE in the absence and presence of additives. J Sci Food Agric 94:1753–1757PubMedCrossRefGoogle Scholar
  29. 29.
    Garreta A, Val-Moraes SP, Garcia-Fernandez Q, Busquets M, Juan C, Oliver A, Ortiz A, Gaffney BJ, Fita I, Manresa A et al (2013) Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. FASEB J 27:4811–4821PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Banthiya S, Pekarova M, Kuhn H, Heydeck D (2015) Secreted lipoxygenase from Pseudomonas aeruginosa exhibits biomembrane oxygenase activity and induces hemolysis in human red blood cells. Arch Biochem Biophys 584:116–124PubMedCrossRefGoogle Scholar
  31. 31.
    Yokoyama C, Shinjo F, Yoshimoto T, Yamamoto S, Oates JA, Brash AR (1986) Arachidonate 12-lipoxygenase purified from porcine leukocytes by immunoaffinity chromatography and its reactivity with hydroperoxyeicosatetraenoic acids. J Biol Chem 261:16714–16721PubMedGoogle Scholar
  32. 32.
    Rapoport SM, Schewe T (1986) The maturational breakdown of mitochondria in reticulocytes. Biochim Biophys Acta 864:471–495PubMedCrossRefGoogle Scholar
  33. 33.
    Nugteren DH (1975) Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta 380:299–307PubMedCrossRefGoogle Scholar
  34. 34.
    Rapoport SM, Schewe T, Wiesner R, Halangk W, Ludwig P, Janicke-Hohne M, Tannert C, Hiebsch C, Klatt D (1979) The lipoxygenase of reticulocytes. Purification, characterization and biological dynamics of the lipoxygenase; its identity with the respiratory inhibitors of the reticulocyte. Eur J Biochem 96:545–561PubMedCrossRefGoogle Scholar
  35. 35.
    Kuhn H, Sprecher H, Brash AR (1990) On singular or dual positional specificity of lipoxygenases. The number of chiral products varies with alignment of methylene groups at the active site of the enzyme. J Biol Chem 265:16300–16305PubMedGoogle Scholar
  36. 36.
    Kuhn H, Belkner J, Wiesner R, Brash AR (1990) Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J Biol Chem 265:18351–18361PubMedGoogle Scholar
  37. 37.
    Belkner J, Wiesner R, Rathman J, Barnett J, Sigal E, Kuhn H (1993) Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem 213:251–261PubMedCrossRefGoogle Scholar
  38. 38.
    Ludwig P, Holzhutter HG, Colosimo A, Silvestrini MC, Schewe T, Rapoport SM (1987) A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem 168:325–337PubMedCrossRefGoogle Scholar
  39. 39.
    Hartel B, Ludwig P, Schewe T, Rapoport SM (1982) Self-inactivation by 13-hydroperoxylinoleic acid and lipohydroperoxidase activity of the reticulocyte lipoxygenase. Eur J Biochem 126:353–357PubMedCrossRefGoogle Scholar
  40. 40.
    Rapoport S, Hartel B, Hausdorf G (1984) Methionine sulfoxide formation: the cause of self-inactivation of reticulocyte lipoxygenase. Eur J Biochem 139:573–576PubMedCrossRefGoogle Scholar
  41. 41.
    Gan QF, Witkop GL, Sloane DL, Straub KM, Sigal E (1995) Identification of a specific methionine in mammalian 15-lipoxygenase which is oxygenated by the enzyme product 13-HPODE: dissociation of sulfoxide formation from self-inactivation. Biochemistry 34:7069–7079PubMedCrossRefGoogle Scholar
  42. 42.
    Wiesner R, Suzuki H, Walther M, Yamamoto S, Kuhn H (2003) Suicidal inactivation of the rabbit 15-lipoxygenase by 15S-HpETE is paralleled by covalent modification of active site peptides. Free Radic Biol Med 34:304–315PubMedCrossRefGoogle Scholar
  43. 43.
    Kuhn H, Saam J, Eibach S, Holzhutter HG, Ivanov I, Walther M (2005) Structural biology of mammalian lipoxygenases: enzymatic consequences of targeted alterations of the protein structure. Biochem Biophys Res Commun 338:93–101PubMedCrossRefGoogle Scholar
  44. 44.
    Mei G, Di Venere A, Nicolai E, Angelucci CB, Ivanov I, Sabatucci A, Dainese E, Kuhn H, Maccarrone M (2008) Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability. Biochemistry 47:9234–9242PubMedCrossRefGoogle Scholar
  45. 45.
    Brinckmann R, Schnurr K, Heydeck D, Rosenbach T, Kolde G, Kuhn H (1998) Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood 91:64–74PubMedGoogle Scholar
  46. 46.
    Walther M, Wiesner R, Kuhn H (2004) Investigations into calcium-dependent membrane association of 15-lipoxygenase-1. Mechanistic roles of surface-exposed hydrophobic amino acids and calcium. J Biol Chem 279:3717–3725PubMedCrossRefGoogle Scholar
  47. 47.
    Lankin VZ, Kuhn H, Hiebsch C, Schewe T, Rapoport SM, Tikhaze AK, Gordeeva NT (1985) On the nature of the stimulation of the lipoxygenase from rabbit reticulocytes by biological membranes. Biomed Biochim Acta 44:655–664PubMedGoogle Scholar
  48. 48.
    Bryant RW, Bailey JM, Schewe T, Rapoport SM (1982) Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15-S-hydroperoxy-eicosatetraenoic acid. J Biol Chem 257:6050–6055PubMedGoogle Scholar
  49. 49.
    Kuhn H, Wiesner R, Schewe T, Rapoport SM (1983) Reticulocyte lipoxygenase exhibits both n-6 and n-9 activities. FEBS Lett 153:353–356PubMedCrossRefGoogle Scholar
  50. 50.
    Matsuda S, Suzuki H, Yoshimoto T, Yamamoto S, Miyatake A (1991) Analysis of non-heme iron in arachidonate 12-lipoxygenase of porcine leukocytes. Biochim Biophys Acta 1084:202–204PubMedCrossRefGoogle Scholar
  51. 51.
    Ueda N, Hiroshima A, Natsui K, Shinjo F, Yoshimoto T, Yamamoto S, Ii K, Gerozissis K, Dray F (1990) Localization of arachidonate 12-lipoxygenase in parenchymal cells of porcine anterior pituitary. J Biol Chem 265:2311–2316PubMedGoogle Scholar
  52. 52.
    Maruyama T, Ueda N, Yoshimoto T, Yamamoto S, Komatsu N, Watanabe K (1989) Immunohistochemical study of arachidonate 12-lipoxygenase in porcine tissues. J Histochem Cytochem 37:1125–1131PubMedCrossRefGoogle Scholar
  53. 53.
    Yoshimoto T, Suzuki H, Yamamoto S, Takai T, Yokoyama C, Tanabe T (1990) Cloning and sequence analysis of the cDNA for arachidonate 12-lipoxygenase of porcine leukocytes. Proc Natl Acad Sci USA 87:2142–2146PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Arakawa T, Oshima T, Kishimoto K, Yoshimoto T, Yamamoto S (1992) Molecular structure and function of the porcine arachidonate 12-lipoxygenase gene. J Biol Chem 267:12188–12191PubMedGoogle Scholar
  55. 55.
    Reddy RG, Yoshimoto T, Yamamoto S, Marnett LJ (1994) Expression, purification, and characterization of porcine leukocyte 12-lipoxygenase produced in the methylotrophic yeast, Pichia pastoris. Biochem Biophys Res Commun 205:381–388PubMedCrossRefGoogle Scholar
  56. 56.
    Suzuki H, Kishimoto K, Yoshimoto T, Yamamoto S, Kanai F, Ebina Y, Miyatake A, Tanabe T (1994) Site-directed mutagenesis studies on the iron-binding domain and the determinant for the substrate oxygenation site of porcine leukocyte arachidonate 12-lipoxygenase. Biochim Biophys Acta 1210:308–316PubMedCrossRefGoogle Scholar
  57. 57.
    Borngraber S, Browner M, Gillmor S, Gerth C, Anton M, Fletterick R, Kuhn H (1999) Shape and specificity in mammalian 15-lipoxygenase active site. The functional interplay of sequence determinants for the reaction specificity. J Biol Chem 274:37345–37350PubMedCrossRefGoogle Scholar
  58. 58.
    Kishimoto K, Nakamura M, Suzuki H, Yoshimoto T, Yamamoto S, Takao T, Shimonishi Y, Tanabe T (1996) Suicide inactivation of porcine leukocyte 12-lipoxygenase associated with its incorporation of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid derivative. Biochim Biophys Acta 1300:56–62PubMedCrossRefGoogle Scholar
  59. 59.
    Ueda N, Yamamoto S, Fitzsimmons BJ, Rokach J (1987) Lipoxin synthesis by arachidonate 5-lipoxygenase purified from porcine leukocytes. Biochem Biophys Res Commun 144:996–1002PubMedCrossRefGoogle Scholar
  60. 60.
    Kuhn H, Wiesner R, Alder L, Fitzsimmons BJ, Rokach J, Brash AR (1987) Formation of lipoxin B by the pure reticulocyte lipoxygenase via sequential oxygenation of the substrate. Eur J Biochem 169:593–601PubMedCrossRefGoogle Scholar
  61. 61.
    Takahashi Y, Glasgow WC, Suzuki H, Taketani Y, Yamamoto S, Anton M, Kuhn H, Brash AR (1993) Investigation of the oxygenation of phospholipids by the porcine leukocyte and human platelet arachidonate 12-lipoxygenases. Eur J Biochem 218:165–171PubMedCrossRefGoogle Scholar
  62. 62.
    Kuhn H, Belkner J, Suzuki H, Yamamoto S (1994) Oxidative modification of human lipoproteins by lipoxygenases of different positional specificities. J Lipid Res 35:1749–1759PubMedGoogle Scholar
  63. 63.
    Sigal E, Grunberger D, Craik CS, Caughey GH, Nadel JA (1988) Arachidonate 15-lipoxygenase (omega-6 lipoxygenase) from human leukocytes. Purification and structural homology to other mammalian lipoxygenases. J Biol Chem 263:5328–5332PubMedGoogle Scholar
  64. 64.
    Sigal E, Craik CS, Highland E, Grunberger D, Costello LL, Dixon RA, Nadel JA (1988) Molecular cloning and primary structure of human 15-lipoxygenase. Biochem Biophys Res Commun 157:457–464PubMedCrossRefGoogle Scholar
  65. 65.
    Kelavkar U, Wang S, Montero A, Murtagh J, Shah K, Badr K (1998) Human 15-lipoxygenase gene promoter: analysis and identification of DNA binding sites for IL-13-induced regulatory factors in monocytes. Mol Biol Rep 25:173–182PubMedCrossRefGoogle Scholar
  66. 66.
    Kritzik MR, Ziober AF, Dicharry S, Conrad DJ, Sigal E (1997) Characterization and sequence of an additional 15-lipoxygenase transcript and of the human gene. Biochim Biophys Acta 1352:267–281PubMedCrossRefGoogle Scholar
  67. 67.
    Kelavkar UP, Badr KF (1999) Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene. Proc Natl Acad Sci USA 96:4378–4383PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kelavkar U, Cohen C, Eling T, Badr K (2002) 15-lipoxygenase-1 overexpression in prostate adenocarcinoma. Adv Exp Med Biol 507:133–145PubMedCrossRefGoogle Scholar
  69. 69.
    Nadel JA, Conrad DJ, Ueki IF, Schuster A, Sigal E (1991) Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells. J Clin Invest 87:1139–1145PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Narumiya S, Salmon JA, Flower RJ, Vane JR (1982) Purification and properties of arachidonate-15-lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. Adv Prostaglandin Thromboxane Leukot Res 9:77–82PubMedGoogle Scholar
  71. 71.
    Vanderhoek JY, Bailey JM (1984) Activation of a 15-lipoxygenase/leukotriene pathway in human polymorphonuclear leukocytes by the anti-inflammatory agent ibuprofen. J Biol Chem 259:6752–6756PubMedGoogle Scholar
  72. 72.
    Levy BD, Romano M, Chapman HA, Reilly JJ, Drazen J, Serhan CN (1993) Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid and lipoxins. J Clin Invest 92:1572–1579PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Takayama H, Gimbrone MA Jr, Schafer AI (1987) Vascular lipoxygenase activity: synthesis of 15-hydroxyeicosatetraenoic acid from arachidonic acid by blood vessels and cultured vascular endothelial cells. Thromb Res 45:803–816PubMedCrossRefGoogle Scholar
  74. 74.
    Lei ZM, Rao CV (1992) The expression of 15-lipoxygenase gene and the presence of functional enzyme in cytoplasm and nuclei of pregnancy human myometria. Endocrinology 130:861–870PubMedGoogle Scholar
  75. 75.
    Giannopoulos PF, Joshi YB, Chu J, Pratico D (2013) The 12-15-lipoxygenase is a modulator of Alzheimer’s-related tau pathology in vivo. Aging Cell 12:1082–1090PubMedCrossRefGoogle Scholar
  76. 76.
    Haynes RL, van Leyen K (2013) 12/15-lipoxygenase expression is increased in oligodendrocytes and microglia of periventricular leukomalacia. Dev Neurosci 35:140–154PubMedGoogle Scholar
  77. 77.
    Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Witztum JL, Steinberg D (1990) Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 87:6959–6963PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Conrad DJ, Kuhn H, Mulkins M, Highland E, Sigal E (1992) Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci USA 89:217–221PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nassar GM, Morrow JD, Roberts LJ 2nd, Lakkis FG, Badr KF (1994) Induction of 15-lipoxygenase by interleukin-13 in human blood monocytes. J Biol Chem 269:27631–27634PubMedGoogle Scholar
  80. 80.
    Chaitidis P, O’Donnell V, Kuban RJ, Bermudez-Fajardo A, Ungethuem U, Kuhn H (2005) Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13. Cytokine 30:366–377PubMedCrossRefGoogle Scholar
  81. 81.
    Brinckmann R, Topp MS, Zalan I, Heydeck D, Ludwig P, Kuhn H, Berdel WE, Habenicht JR (1996) Regulation of 15-lipoxygenase expression in lung epithelial cells by interleukin-4. Biochem J 318(Pt 1):305–312PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Shankaranarayanan P, Chaitidis P, Kuhn H, Nigam S (2001) Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J Biol Chem 276:42753–42760PubMedCrossRefGoogle Scholar
  83. 83.
    Liu C, Schain F, Han H, Xu D, Andersson-Sand H, Forsell P, Claesson HE, Bjorkholm M, Sjoberg J (2012) Epigenetic and transcriptional control of the 15-lipoxygenase-1 gene in a Hodgkin lymphoma cell line. Exp Cell Res 318:169–176PubMedCrossRefGoogle Scholar
  84. 84.
    Roy B, Cathcart MK (1998) Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes. J Biol Chem 273:32023–32029PubMedCrossRefGoogle Scholar
  85. 85.
    Xu B, Bhattacharjee A, Roy B, Feldman GM, Cathcart MK (2004) Role of protein kinase C isoforms in the regulation of interleukin-13-induced 15-lipoxygenase gene expression in human monocytes. J Biol Chem 279:15954–15960PubMedCrossRefGoogle Scholar
  86. 86.
    Xu B, Bhattacharjee A, Roy B, Xu HM, Anthony D, Frank DA, Feldman GM, Cathcart MK (2003) Interleukin-13 induction of 15-lipoxygenase gene expression requires p38 mitogen-activated protein kinase-mediated serine 727 phosphorylation of Stat1 and Stat3. Mol Cell Biol 23:3918–3928PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bhattacharjee A, Shukla M, Yakubenko VP, Mulya A, Kundu S, Cathcart MK (2013) IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 54:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kuhn H, O’Donnell VB (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res 45:334–356PubMedCrossRefGoogle Scholar
  89. 89.
    Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J (2014) Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 55:385–397PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Chen B, Tsui S, Boeglin WE, Douglas RS, Brash AR, Smith TJ (2006) Interleukin-4 induces 15-lipoxygenase-1 expression in human orbital fibroblasts from patients with Graves disease. Evidence for anatomic site-selective actions of Th2 cytokines. J Biol Chem 281:18296–18306PubMedCrossRefGoogle Scholar
  91. 91.
    Kelavkar UP, Wang S, Badr KF (2000) Ku autoantigen (DNA helicase) is required for interleukins-13/-4-induction of 15-lipoxygenase-1 gene expression in human epithelial cells. Genes Immun 1:237–250PubMedCrossRefGoogle Scholar
  92. 92.
    Han H, Xu D, Liu C, Claesson HE, Bjorkholm M, Sjoberg J (2014) Interleukin-4-mediated 15-lipoxygenase-1 trans-activation requires UTX recruitment and H3K27me3 demethylation at the promoter in A549 cells. PLoS One 9:e85085PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kühn H, Barnett J, Grunberger D, Baecker P, Chow J, Nguyen B, Bursztyn-Pettegrew H, Chan H, Sigal E (1993) Overexpression, purification and characterization of human recombinant 15-lipoxygenase. Biochim Biophys Acta 1169:80–89PubMedCrossRefGoogle Scholar
  94. 94.
    Sloane DL, Dixon RA, Craik CS, Sigal E (1991) Expression of cloned human 15-lipoxygenase in eukaryotic and prokaryotic systems. Adv Prostaglandin Thromboxane Leukot Res 21A:25–28PubMedGoogle Scholar
  95. 95.
    Sloane DL, Leung R, Barnett J, Craik CS, Sigal E (1995) Conversion of human 15-lipoxygenase to an efficient 12-lipoxygenase: the side-chain geometry of amino acids 417 and 418 determine positional specificity. Protein Eng 8:275–282PubMedCrossRefGoogle Scholar
  96. 96.
    Sloane DL, Leung R, Craik CS, Sigal E (1991) A primary determinant for lipoxygenase positional specificity. Nature 354:149–152PubMedCrossRefGoogle Scholar
  97. 97.
    Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722PubMedCrossRefGoogle Scholar
  98. 98.
    Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, de Filippo C et al (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chaitidis P, Adel S, Anton M, Heydeck D, Kuhn H, Horn T (2013) Lipoxygenase pathways in Homo neanderthalensis: functional comparison with Homo sapiens isoforms. J Lipid Res 54:1397–1409PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Horn T, Reddy Kakularam K, Anton M, Richter C, Reddanna P, Kuhn H (2013) Functional characterization of genetic enzyme variations in human lipoxygenases. Redox Biol 1:566–577PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Johannesson M, Backman L, Claesson HE, Forsell PK (2010) Cloning, purification and characterization of non-human primate 12/15-lipoxygenases. Prostaglandins Leukot Essent Fatty Acids 82:121–129PubMedCrossRefGoogle Scholar
  102. 102.
    Vogel R, Jansen C, Roffeis J, Reddanna P, Forsell P, Claesson HE, Kuhn H, Walther M (2010) Applicability of the triad concept for the positional specificity of mammalian lipoxygenases. J Biol Chem 285:5369–5376PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Berger M, Schwarz K, Thiele H, Reimann I, Huth A, Borngraber S, Kuhn H, Thiele BJ (1998) Simultaneous expression of leukocyte-type 12-lipoxygenase and reticulocyte-type 15-lipoxygenase in rabbits. J Mol Biol 278:935–948PubMedCrossRefGoogle Scholar
  104. 104.
    Funk CD, Chen XS, Johnson EN, Zhao L (2002) Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 68–69:303–312PubMedCrossRefGoogle Scholar
  105. 105.
    Chen XS, Kurre U, Jenkins NA, Copeland NG, Funk CD (1994) cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure, and chromosomal localizations of murine 12-lipoxygenases. J Biol Chem 269:13979–13987PubMedGoogle Scholar
  106. 106.
    Freire-Moar J, Alavi-Nassab A, Ng M, Mulkins M, Sigal E (1995) Cloning and characterization of a murine macrophage lipoxygenase. Biochim Biophys Acta 1254:112–116PubMedCrossRefGoogle Scholar
  107. 107.
    Kinzig A, Fürstenberger G, Bürger F, Vogel S, Müller-Decker K, Mincheva A, Lichter P, Marks F, Krieg P (1997) Murine epidermal lipoxygenase (Aloxe) encodes a 12-lipoxygenase isoform. FEBS Lett 402:162–166PubMedCrossRefGoogle Scholar
  108. 108.
    Watanabe T, Medina JF, Haeggstrom JZ, Radmark O, Samuelsson B (1993) Molecular cloning of a 12-lipoxygenase cDNA from rat brain. Eur J Biochem 212:605–612PubMedCrossRefGoogle Scholar
  109. 109.
    Pekárová M, Kuhn H, Bezáková L, Ufer C, Heydeck D (2015) Mutagenesis of triad determinants of rat Alox15 alters the specificity of fatty acid and phospholipid oxygenation. Arch Biochem Biophys 571:50–507PubMedCrossRefGoogle Scholar
  110. 110.
    Sloane DL, Browner MF, Dauter Z, Wilson K, Fletterick RJ, Sigal E (1990) Purification and crystallization of 15-lipoxygenase from rabbit reticulocytes. Biochem Biophys Res Commun 173:507–513PubMedCrossRefGoogle Scholar
  111. 111.
    Gillmor SA, Villasenor A, Fletterick R, Sigal E, Browner MF (1997) The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat Struct Biol 4:1003–1009PubMedCrossRefGoogle Scholar
  112. 112.
    Choi J, Chon JK, Kim S, Shin W (2008) Conformational flexibility in mammalian 15S-lipoxygenase: reinterpretation of the crystallographic data. Proteins 70:1023–1032PubMedCrossRefGoogle Scholar
  113. 113.
    Walther M, Anton M, Wiedmann M, Fletterick R, Kuhn H (2002) The N-terminal domain of the reticulocyte-type 15-lipoxygenase is not essential for enzymatic activity but contains determinants for membrane binding. J Biol Chem 277:27360–27366PubMedCrossRefGoogle Scholar
  114. 114.
    Walther M, Hofheinz K, Vogel R, Roffeis J, Kühn H (2011) The N-terminal β-barrel domain of mammalian lipoxygenases including mouse 5-lipoxygenase is not essential for catalytic activity and membrane binding but exhibits regulatory functions. Arch Biochem Biophys 516:1–9PubMedCrossRefGoogle Scholar
  115. 115.
    Romanov S, Wiesner R, Myagkova G, Kuhn H, Ivanov I (2006) Affinity labeling of the rabbit 12/15-lipoxygenase using azido derivatives of arachidonic acid. Biochemistry 45:3554–3562PubMedCrossRefGoogle Scholar
  116. 116.
    Hammel M, Walther M, Prassl R, Kuhn H (2004) Structural flexibility of the N-terminal beta-barrel domain of 15-lipoxygenase-1 probed by small angle X-ray scattering. Functional consequences for activity regulation and membrane binding. J Mol Biol 343:917–929PubMedCrossRefGoogle Scholar
  117. 117.
    Shang W, Ivanov I, Svergun DI, Borbulevych OY, Aleem AM, Stehling S, Jankun J, Kuhn H, Skrzypczak-Jankun E (2011) Probing dimerization and structural flexibility of mammalian lipoxygenases by small-angle X-ray scattering. J Mol Biol 409:654–668PubMedCrossRefGoogle Scholar
  118. 118.
    Di Venere A, Horn T, Stehling S, Mei G, Masgrau L, Gonzalez-Lafont A, Kuhn H, Ivanov I (2013) Role of Arg403 for thermostability and catalytic activity of rabbit 12/15-lipoxygenase. Biochim Biophys Acta 1831:1079–1088PubMedCrossRefGoogle Scholar
  119. 119.
    Suardiaz R, Masgrau L, Lluch JM, Gonzalez-Lafont A (2014) Regio- and stereospecificity in the oxygenation of arachidonic acid catalyzed by Leu597 mutants of rabbit 15-lipoxygenase: a QM/MM study. Chemphyschem 15:2303–2310PubMedCrossRefGoogle Scholar
  120. 120.
    Toledo L, Masgrau L, Lluch JM, Gonzalez-Lafont A (2011) Substrate binding to mammalian 15-lipoxygenase. J Comput Aided Mol Des 25:825–835PubMedCrossRefGoogle Scholar
  121. 121.
    Xu S, Mueser TC, Marnett LJ, Funk MO Jr (2012) Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure 20:1490–1497PubMedCrossRefGoogle Scholar
  122. 122.
    Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285PubMedCrossRefGoogle Scholar
  123. 123.
    Dainese E, Sabatucci A, van Zadelhoff G, Angelucci CB, Vachette P, Veldink GA, Agro AF, Maccarrone M (2005) Structural stability of soybean lipoxygenase-1 in solution as probed by small angle X-ray scattering. J Mol Biol 349:143–152PubMedCrossRefGoogle Scholar
  124. 124.
    Moin ST, Hofer TS, Sattar R, Ul-Haq Z (2011) Molecular dynamics simulation of mammalian 15S-lipoxygenase with AMBER force field. Eur Biophys J 40:715–726PubMedCrossRefGoogle Scholar
  125. 125.
    Ivanov I, Shang W, Toledo L, Masgrau L, Svergun DI, Stehling S, Gomez H, Di Venere A, Mei G, Lluch JM et al (2012) Ligand-induced formation of transient dimers of mammalian 12/15-lipoxygenase: a key to allosteric behavior of this class of enzymes? Proteins 80:703–712PubMedCrossRefGoogle Scholar
  126. 126.
    Schewe T (2002) 15-lipoxygenase-1: a prooxidant enzyme. Biol Chem 383:365–374PubMedCrossRefGoogle Scholar
  127. 127.
    Bryant RW, Schewe T, Rapoport SM, Bailey JM (1985) Leukotriene formation by a purified reticulocyte lipoxygenase enzyme. Conversion of arachidonic acid and 15-hydroperoxyeicosatetraenoic acid to 14, 15-leukotriene A4. J Biol Chem 260:3548–3555PubMedGoogle Scholar
  128. 128.
    Brash AR, Yokoyama C, Oates JA, Yamamoto S (1989) Mechanistic studies of the dioxygenase and leukotriene synthase activities of the porcine leukocyte 12S-lipoxygenase. Arch Biochem Biophys 273:414–422PubMedCrossRefGoogle Scholar
  129. 129.
    Ivanov I, Saam J, Kuhn H, Holzhutter HG (2005) Dual role of oxygen during lipoxygenase reactions. FEBS J 272:2523–2535PubMedCrossRefGoogle Scholar
  130. 130.
    Zheng Y, Brash AR (2010) On the role of molecular oxygen in lipoxygenase activation: comparison and contrast of epidermal lipoxygenase-3 with soybean lipoxygenase-1. J Biol Chem 285:39876–39887PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Toledo L, Masgrau L, Maréchal JD, Lluch JM, González-Lafont A (2010) Insights into the mechanism of binding of arachidonic acid to mammalian 15-lipoxygenases. J Phys Chem B 114:7037–7046PubMedCrossRefGoogle Scholar
  132. 132.
    Schwarz K, Borngraber S, Anton M, Kuhn H (1998) Probing the substrate alignment at the active site of 15-lipoxygenases by targeted substrate modification and site-directed mutagenesis. Evidence for an inverse substrate orientation. Biochemistry 37:15327–15335PubMedCrossRefGoogle Scholar
  133. 133.
    Kuhn H, Schewe T, Rapoport SM (1986) The stereochemistry of the reactions of lipoxygenases and their metabolites. Proposed nomenclature of lipoxygenases and related enzymes. Adv Enzymol Relat Areas Mol Biol 58:273–311PubMedGoogle Scholar
  134. 134.
    Van Os CP, Rijke-Schilder GP, Van Halbeek H, Verhagen J, Vliegenthart JF (1981) Double dioxygenation of arachidonic acid by soybean lipoxygenase-1. Kinetics and regio-stereo specificities of the reaction steps. Biochim Biophys Acta 663:177–193PubMedCrossRefGoogle Scholar
  135. 135.
    Serhan CN, Petasis NA (2011) Resolvins and protectins in inflammation resolution. Chem Rev 111:5922–5943PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Yamamoto S, Ueda N, Yokoyama C, Fitzsimmons BJ, Rokach J, Oates JA, Brash AR (1988) Lipoxin syntheses by arachidonate 12- and 5-lipoxygenases purified from porcine leukocytes. Adv Exp Med Biol 229:15–26PubMedGoogle Scholar
  137. 137.
    Belkner J, Wiesner R, Kuhn H, Lankin VZ (1991) The oxygenation of cholesterol esters by the reticulocyte lipoxygenase. FEBS Lett 279:110–114PubMedCrossRefGoogle Scholar
  138. 138.
    Kuhn H, Brash AR (1990) Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. J Biol Chem 265:1454–1458PubMedGoogle Scholar
  139. 139.
    van Leyen K, Duvoisin RM, Engelhardt H, Wiedmann M (1998) A function for lipoxygenase in programmed organelle degradation. Nature 395:392–395PubMedCrossRefGoogle Scholar
  140. 140.
    Belkner J, Stender H, Kuhn H (1998) The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J Biol Chem 273:23225–23232PubMedCrossRefGoogle Scholar
  141. 141.
    Upston JM, Neuzil J, Witting PK, Alleva R, Stocker R (1997) Oxidation of free fatty acids in low density lipoprotein by 15-lipoxygenase stimulates nonenzymic, alpha-tocopherol-mediated peroxidation of cholesteryl esters. J Biol Chem 272:30067–30074PubMedCrossRefGoogle Scholar
  142. 142.
    Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103:1597–1604PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    George J, Afek A, Shaish A, Levkovitz H, Bloom N, Cyrus T, Zhao L, Funk CD, Sigal E, Harats D (2001) 12/15-lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation 104:1646–1650PubMedCrossRefGoogle Scholar
  144. 144.
    Zhao L, Pratico D, Rader DJ, Funk CD (2005) 12/15-lipoxygenase gene disruption and vitamin E administration diminish atherosclerosis and oxidative stress in apolipoprotein E deficient mice through a final common pathway. Prostaglandins Other Lipid Mediat 78:185–193PubMedCrossRefGoogle Scholar
  145. 145.
    Garssen GJ, Vliegenthart JF, Boldingh J (1971) An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides. Biochem J 122:327–332PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    de Groot JJ, Garssen GJ, Vliegenthart JF, Boldingh J (1973) The detection of linoleic acid radicals in the anaerobic reaction of lipoxygenase. Biochim Biophys Acta 326:279–284PubMedCrossRefGoogle Scholar
  147. 147.
    Garssen GJ, Vliegenthart JF, Boldingh J (1972) The origin and structures of dimeric fatty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem J 130:435–442PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Streckert G, Stan HJ (1975) Conversion of linoleic acid hydroperoxide by soybean lipoxygenase in the presence of guaiacol: identification of the reaction products. Lipids 10:847–854PubMedCrossRefGoogle Scholar
  149. 149.
    Zheng Y, Brash AR (2010) Dioxygenase activity of epidermal lipoxygenase-3 unveiled: typical and atypical features of its catalytic activity with natural and synthetic polyunsaturated fatty acids. J Biol Chem 285:39866–39875PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Munoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR (2014) The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta 1841:401–408PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Salzmann U, Kuhn H, Schewe T, Rapoport SM (1984) Pentane formation during the anaerobic reactions of reticulocyte lipoxygenase. Comparison with lipoxygenases from soybeans and green pea seeds. Biochim Biophys Acta 795:535–542PubMedCrossRefGoogle Scholar
  152. 152.
    Belkner J, Kuhn H, Wiesner R (1990) Oxygenation of biological membranes by the reticulocyte lipoxygenase. Lack of stoichiometry between oxygen uptake and product formation. Biomed Biochim Acta 49:S31–34PubMedGoogle Scholar
  153. 153.
    Kuhn H, Salzmann-Reinhardt U, Ludwig P, Ponicke K, Schewe T, Rapoport S (1986) The stoichiometry of oxygen uptake and conjugated diene formation during the dioxygenation of linoleic acid by the pure reticulocyte lipoxygenase. Evidence for aerobic hydroperoxidase activity. Biochim Biophys Acta 876:187–193PubMedCrossRefGoogle Scholar
  154. 154.
    Maas RL, Brash AR (1983) Evidence for a lipoxygenase mechanism in the biosynthesis of epoxide and dihydroxy leukotrienes from 15(S)-hydroperoxyicosatetraenoic acid by human platelets and porcine leukocytes. Proc Natl Acad Sci USA 80:2884–2888PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Yamamoto S, Ueda N, Yokoyama C, Kaneko S, Shinjo F, Yoshimoto T, Oates JA, Brash AR, Fitzsimmons BJ, Rokach J (1987) Dioxygenase and leukotriene A synthase activities of arachidonate 5- and 12-lipoxygenases purified from porcine leukocytes. Adv Prostaglandin Thromboxane Leukot Res 17A:55–59PubMedGoogle Scholar
  156. 156.
    Brash AR, Ingram CD, Harris TM (1987) Analysis of a specific oxygenation reaction of soybean lipoxygenase-1 with fatty acids esterified in phospholipids. Biochemistry 26:5465–5471PubMedCrossRefGoogle Scholar
  157. 157.
    Saam J, Ivanov I, Walther M, Holzhutter HG, Kuhn H (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci USA 104:13319–13324PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Knapp MJ, Klinman JP (2003) Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. Biochemistry 42:11466–11475PubMedCrossRefGoogle Scholar
  159. 159.
    Knapp MJ, Seebeck FP, Klinman JP (2001) Steric control of oxygenation regiochemistry in soybean lipoxygenase-1. J Am Chem Soc 123:2931–2932PubMedCrossRefGoogle Scholar
  160. 160.
    Cohen J, Arkhipov A, Braun R, Schulten K (2006) Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys J 91:1844–1857PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of BiochemistryCharité—University Medicine BerlinBerlinGermany

Personalised recommendations