Skip to main content

Catalytic Multiplicity of 15-Lipoxygenase-1 Orthologs (ALOX15) of Different Species

  • Chapter
  • First Online:
Lipoxygenases in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 619 Accesses

Abstract

Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in bacteria and eucarya and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as an enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 orthologs have extensively been characterized and their biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 orthologs of various mammalian species (rabbit, pig, human, nonhuman primates, mouse, rat). Because of space limitations the biological roles of ALOX15 orthologs have not been addressed since this topic has extensively been covered in a previous review (Kuhn et al., Biochim Biophys Acta 1851:308–330, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LOX:

Lipoxygenase

AA:

Arachidonic acid

13S-H(p)ODE:

(13S,9Z,11E)-13-hydro(pero)xyoctadeca-9,11-dienoic acid

15S-H(p)ETE:

(15S,5Z,8Z,11Z,13E)-15-hydro(pero)xyeicosa-5,8,11,13-tetraenoic acid

12S-H(p)ETE:

(12S,5Z,8Z,10E,14Z)-12-hydro(pero)xyeicosa-5,8,10,14-tetraenoic acid

SAXS:

Small angle X-ray scattering

References

  1. Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111:5866–5898

    Article  PubMed  CAS  Google Scholar 

  2. Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O’Donnell VB, Kuhn H, Walther M (2010) Molecular enzymology of lipoxygenases. Arch Biochem Biophys 503:161–174

    Article  CAS  PubMed  Google Scholar 

  3. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    Article  CAS  PubMed  Google Scholar 

  4. Kuhn H, Banthiya S, van Leyen K (2015) Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Horn T, Adel S, Schumann R, Sur S, Kakularam KR, Polamarasetty A, Redanna P, Kuhn H, Heydeck D (2014) Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog Lipid Res 57C:13–39

    Google Scholar 

  6. Hamberg M, Samuelsson B (1974) Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schewe T, Halangk W, Hiebsch C, Rapoport SM (1975) A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett 60:149–152

    Article  CAS  PubMed  Google Scholar 

  8. Radmark O, Werz O, Steinhilber D, Samuelsson B (2015) 5-lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta 1851:331–339

    Article  PubMed  CAS  Google Scholar 

  9. Kanaoka Y, Boyce JA (2014) Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy Asthma Immunol Res 6:288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171–1176

    Article  CAS  PubMed  Google Scholar 

  11. Sun D, Funk CD (1996) Disruption of 12/15-lipoxygenase expression in peritoneal macrophages. Enhanced utilization of the 5-lipoxygenase pathway and diminished oxidation of low density lipoprotein. J Biol Chem 271:24055–24062

    Article  CAS  PubMed  Google Scholar 

  12. Johnson EN, Brass LF, Funk CD (1998) Increased platelet sensitivity to ADP in mice lacking platelet-type 12-lipoxygenase. Proc Natl Acad Sci USA 95:3100–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen XS, Sheller JR, Johnson EN, Funk CD (1994) Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature 372:179–182

    Article  CAS  PubMed  Google Scholar 

  14. Epp N, Fürstenberger G, Müller K, de Juanes S, Leitges M, Hausser I, Thieme F, Liebisch G, Schmitz G, Krieg P (2007) 12R-lipoxygenase deficiency disrupts epidermal barrier function. J Cell Biol 177:173–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krieg P, Rosenberger S, de Juanes S, Latzko S, Hou J, Dick A, Kloz U, van der Hoeven F, Hausser I, Esposito I et al (2013) Aloxe3 knockout mice reveal a function of epidermal lipoxygenase-3 as hepoxilin synthase and its pivotal role in barrier formation. J Invest Dermatol 133:172–180

    Article  CAS  PubMed  Google Scholar 

  16. Krieg P, Furstenberger G (2014) The role of lipoxygenases in epidermis. Biochim Biophys Acta 1841:390–400

    Article  CAS  PubMed  Google Scholar 

  17. Borngraber S, Kuban RJ, Anton M, Kuhn H (1996) Phenylalanine 353 is a primary determinant for the positional specificity of mammalian 15-lipoxygenases. J Mol Biol 264:1145–1153

    Article  CAS  PubMed  Google Scholar 

  18. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haas U, Raschperger E, Hamberg M, Samuelsson B, Tryggvason K, Haeggstrom JZ (2011) Targeted knock-down of a structurally atypical zebrafish 12S-lipoxygenase leads to severe impairment of embryonic development. Proc Natl Acad Sci USA 108:20479–20484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jansen C, Hofheinz K, Vogel R, Roffeis J, Anton M, Reddanna P, Kuhn H, Walther M (2011) Stereocontrol of arachidonic acid oxygenation by vertebrate lipoxygenases: newly cloned zebrafish lipoxygenase 1 does not follow the Ala-versus-Gly concept. J Biol Chem 286:37804–37812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adel S, Kakularam KR, Horn T, Reddanna P, Kuhn H, Heydeck D (2015) Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens. Arch Biochem Biophys 565:17–24

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert NC, Rui Z, Neau DB, Waight MT, Bartlett SG, Boeglin WE, Brash AR, Newcomer ME (2012) Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J 26:3222–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adel S, Hofheinz K, Heydeck D, Kuhn H, Häfner AK (2014) Phosphorylation mimicking mutations of ALOX5 orthologs of different vertebrates do not alter reaction specificities of the enzymes. Biochim Biophys Acta 1841:1460–1466

    Article  CAS  Google Scholar 

  24. Hansen J, Garreta A, Benincasa M, Fuste MC, Busquets M, Manresa A (2013) Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol 97:4737–4747

    Article  CAS  PubMed  Google Scholar 

  25. Busquets M, Carpena X, Fita I, Fusté C, Garreta A, Manresa Á (2011) Crystallization of the lipoxygenase of Pseudomonas aeruginosa 42A2, evolution and phylogenetic study of the subfamilies of the lipoxygenases. Transworld Research Network, Trivandrum, India

    Google Scholar 

  26. Lu X, Zhang J, Liu S, Zhang D, Xu Z, Wu J, Li J, Du G, Chen J (2013) Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli. Appl Microbiol Biotechnol 97:5793–5800

    Article  CAS  PubMed  Google Scholar 

  27. Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ (2004) The opportunistic pathogen Pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci USA 101:2135–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu Z, Liu S, Lu X, Rao S, Kang Z, Li J, Wang M, Chen J (2014) Thermal inactivation of a recombinant lipoxygenase from Pseudomonas aeruginosa BBE in the absence and presence of additives. J Sci Food Agric 94:1753–1757

    Article  CAS  PubMed  Google Scholar 

  29. Garreta A, Val-Moraes SP, Garcia-Fernandez Q, Busquets M, Juan C, Oliver A, Ortiz A, Gaffney BJ, Fita I, Manresa A et al (2013) Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. FASEB J 27:4811–4821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Banthiya S, Pekarova M, Kuhn H, Heydeck D (2015) Secreted lipoxygenase from Pseudomonas aeruginosa exhibits biomembrane oxygenase activity and induces hemolysis in human red blood cells. Arch Biochem Biophys 584:116–124

    Article  CAS  PubMed  Google Scholar 

  31. Yokoyama C, Shinjo F, Yoshimoto T, Yamamoto S, Oates JA, Brash AR (1986) Arachidonate 12-lipoxygenase purified from porcine leukocytes by immunoaffinity chromatography and its reactivity with hydroperoxyeicosatetraenoic acids. J Biol Chem 261:16714–16721

    CAS  PubMed  Google Scholar 

  32. Rapoport SM, Schewe T (1986) The maturational breakdown of mitochondria in reticulocytes. Biochim Biophys Acta 864:471–495

    Article  CAS  PubMed  Google Scholar 

  33. Nugteren DH (1975) Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta 380:299–307

    Article  CAS  PubMed  Google Scholar 

  34. Rapoport SM, Schewe T, Wiesner R, Halangk W, Ludwig P, Janicke-Hohne M, Tannert C, Hiebsch C, Klatt D (1979) The lipoxygenase of reticulocytes. Purification, characterization and biological dynamics of the lipoxygenase; its identity with the respiratory inhibitors of the reticulocyte. Eur J Biochem 96:545–561

    Article  CAS  PubMed  Google Scholar 

  35. Kuhn H, Sprecher H, Brash AR (1990) On singular or dual positional specificity of lipoxygenases. The number of chiral products varies with alignment of methylene groups at the active site of the enzyme. J Biol Chem 265:16300–16305

    CAS  PubMed  Google Scholar 

  36. Kuhn H, Belkner J, Wiesner R, Brash AR (1990) Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. J Biol Chem 265:18351–18361

    CAS  PubMed  Google Scholar 

  37. Belkner J, Wiesner R, Rathman J, Barnett J, Sigal E, Kuhn H (1993) Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem 213:251–261

    Article  CAS  PubMed  Google Scholar 

  38. Ludwig P, Holzhutter HG, Colosimo A, Silvestrini MC, Schewe T, Rapoport SM (1987) A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes. Eur J Biochem 168:325–337

    Article  CAS  PubMed  Google Scholar 

  39. Hartel B, Ludwig P, Schewe T, Rapoport SM (1982) Self-inactivation by 13-hydroperoxylinoleic acid and lipohydroperoxidase activity of the reticulocyte lipoxygenase. Eur J Biochem 126:353–357

    Article  CAS  PubMed  Google Scholar 

  40. Rapoport S, Hartel B, Hausdorf G (1984) Methionine sulfoxide formation: the cause of self-inactivation of reticulocyte lipoxygenase. Eur J Biochem 139:573–576

    Article  CAS  PubMed  Google Scholar 

  41. Gan QF, Witkop GL, Sloane DL, Straub KM, Sigal E (1995) Identification of a specific methionine in mammalian 15-lipoxygenase which is oxygenated by the enzyme product 13-HPODE: dissociation of sulfoxide formation from self-inactivation. Biochemistry 34:7069–7079

    Article  CAS  PubMed  Google Scholar 

  42. Wiesner R, Suzuki H, Walther M, Yamamoto S, Kuhn H (2003) Suicidal inactivation of the rabbit 15-lipoxygenase by 15S-HpETE is paralleled by covalent modification of active site peptides. Free Radic Biol Med 34:304–315

    Article  CAS  PubMed  Google Scholar 

  43. Kuhn H, Saam J, Eibach S, Holzhutter HG, Ivanov I, Walther M (2005) Structural biology of mammalian lipoxygenases: enzymatic consequences of targeted alterations of the protein structure. Biochem Biophys Res Commun 338:93–101

    Article  CAS  PubMed  Google Scholar 

  44. Mei G, Di Venere A, Nicolai E, Angelucci CB, Ivanov I, Sabatucci A, Dainese E, Kuhn H, Maccarrone M (2008) Structural properties of plant and mammalian lipoxygenases. Temperature-dependent conformational alterations and membrane binding ability. Biochemistry 47:9234–9242

    Article  CAS  PubMed  Google Scholar 

  45. Brinckmann R, Schnurr K, Heydeck D, Rosenbach T, Kolde G, Kuhn H (1998) Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood 91:64–74

    CAS  PubMed  Google Scholar 

  46. Walther M, Wiesner R, Kuhn H (2004) Investigations into calcium-dependent membrane association of 15-lipoxygenase-1. Mechanistic roles of surface-exposed hydrophobic amino acids and calcium. J Biol Chem 279:3717–3725

    Article  CAS  PubMed  Google Scholar 

  47. Lankin VZ, Kuhn H, Hiebsch C, Schewe T, Rapoport SM, Tikhaze AK, Gordeeva NT (1985) On the nature of the stimulation of the lipoxygenase from rabbit reticulocytes by biological membranes. Biomed Biochim Acta 44:655–664

    CAS  PubMed  Google Scholar 

  48. Bryant RW, Bailey JM, Schewe T, Rapoport SM (1982) Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15-S-hydroperoxy-eicosatetraenoic acid. J Biol Chem 257:6050–6055

    CAS  PubMed  Google Scholar 

  49. Kuhn H, Wiesner R, Schewe T, Rapoport SM (1983) Reticulocyte lipoxygenase exhibits both n-6 and n-9 activities. FEBS Lett 153:353–356

    Article  CAS  PubMed  Google Scholar 

  50. Matsuda S, Suzuki H, Yoshimoto T, Yamamoto S, Miyatake A (1991) Analysis of non-heme iron in arachidonate 12-lipoxygenase of porcine leukocytes. Biochim Biophys Acta 1084:202–204

    Article  CAS  PubMed  Google Scholar 

  51. Ueda N, Hiroshima A, Natsui K, Shinjo F, Yoshimoto T, Yamamoto S, Ii K, Gerozissis K, Dray F (1990) Localization of arachidonate 12-lipoxygenase in parenchymal cells of porcine anterior pituitary. J Biol Chem 265:2311–2316

    CAS  PubMed  Google Scholar 

  52. Maruyama T, Ueda N, Yoshimoto T, Yamamoto S, Komatsu N, Watanabe K (1989) Immunohistochemical study of arachidonate 12-lipoxygenase in porcine tissues. J Histochem Cytochem 37:1125–1131

    Article  CAS  PubMed  Google Scholar 

  53. Yoshimoto T, Suzuki H, Yamamoto S, Takai T, Yokoyama C, Tanabe T (1990) Cloning and sequence analysis of the cDNA for arachidonate 12-lipoxygenase of porcine leukocytes. Proc Natl Acad Sci USA 87:2142–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arakawa T, Oshima T, Kishimoto K, Yoshimoto T, Yamamoto S (1992) Molecular structure and function of the porcine arachidonate 12-lipoxygenase gene. J Biol Chem 267:12188–12191

    CAS  PubMed  Google Scholar 

  55. Reddy RG, Yoshimoto T, Yamamoto S, Marnett LJ (1994) Expression, purification, and characterization of porcine leukocyte 12-lipoxygenase produced in the methylotrophic yeast, Pichia pastoris. Biochem Biophys Res Commun 205:381–388

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki H, Kishimoto K, Yoshimoto T, Yamamoto S, Kanai F, Ebina Y, Miyatake A, Tanabe T (1994) Site-directed mutagenesis studies on the iron-binding domain and the determinant for the substrate oxygenation site of porcine leukocyte arachidonate 12-lipoxygenase. Biochim Biophys Acta 1210:308–316

    Article  CAS  PubMed  Google Scholar 

  57. Borngraber S, Browner M, Gillmor S, Gerth C, Anton M, Fletterick R, Kuhn H (1999) Shape and specificity in mammalian 15-lipoxygenase active site. The functional interplay of sequence determinants for the reaction specificity. J Biol Chem 274:37345–37350

    Article  CAS  PubMed  Google Scholar 

  58. Kishimoto K, Nakamura M, Suzuki H, Yoshimoto T, Yamamoto S, Takao T, Shimonishi Y, Tanabe T (1996) Suicide inactivation of porcine leukocyte 12-lipoxygenase associated with its incorporation of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid derivative. Biochim Biophys Acta 1300:56–62

    Article  PubMed  Google Scholar 

  59. Ueda N, Yamamoto S, Fitzsimmons BJ, Rokach J (1987) Lipoxin synthesis by arachidonate 5-lipoxygenase purified from porcine leukocytes. Biochem Biophys Res Commun 144:996–1002

    Article  CAS  PubMed  Google Scholar 

  60. Kuhn H, Wiesner R, Alder L, Fitzsimmons BJ, Rokach J, Brash AR (1987) Formation of lipoxin B by the pure reticulocyte lipoxygenase via sequential oxygenation of the substrate. Eur J Biochem 169:593–601

    Article  CAS  PubMed  Google Scholar 

  61. Takahashi Y, Glasgow WC, Suzuki H, Taketani Y, Yamamoto S, Anton M, Kuhn H, Brash AR (1993) Investigation of the oxygenation of phospholipids by the porcine leukocyte and human platelet arachidonate 12-lipoxygenases. Eur J Biochem 218:165–171

    Article  CAS  PubMed  Google Scholar 

  62. Kuhn H, Belkner J, Suzuki H, Yamamoto S (1994) Oxidative modification of human lipoproteins by lipoxygenases of different positional specificities. J Lipid Res 35:1749–1759

    CAS  PubMed  Google Scholar 

  63. Sigal E, Grunberger D, Craik CS, Caughey GH, Nadel JA (1988) Arachidonate 15-lipoxygenase (omega-6 lipoxygenase) from human leukocytes. Purification and structural homology to other mammalian lipoxygenases. J Biol Chem 263:5328–5332

    CAS  PubMed  Google Scholar 

  64. Sigal E, Craik CS, Highland E, Grunberger D, Costello LL, Dixon RA, Nadel JA (1988) Molecular cloning and primary structure of human 15-lipoxygenase. Biochem Biophys Res Commun 157:457–464

    Article  CAS  PubMed  Google Scholar 

  65. Kelavkar U, Wang S, Montero A, Murtagh J, Shah K, Badr K (1998) Human 15-lipoxygenase gene promoter: analysis and identification of DNA binding sites for IL-13-induced regulatory factors in monocytes. Mol Biol Rep 25:173–182

    Article  CAS  PubMed  Google Scholar 

  66. Kritzik MR, Ziober AF, Dicharry S, Conrad DJ, Sigal E (1997) Characterization and sequence of an additional 15-lipoxygenase transcript and of the human gene. Biochim Biophys Acta 1352:267–281

    Article  CAS  PubMed  Google Scholar 

  67. Kelavkar UP, Badr KF (1999) Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene. Proc Natl Acad Sci USA 96:4378–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kelavkar U, Cohen C, Eling T, Badr K (2002) 15-lipoxygenase-1 overexpression in prostate adenocarcinoma. Adv Exp Med Biol 507:133–145

    Article  CAS  PubMed  Google Scholar 

  69. Nadel JA, Conrad DJ, Ueki IF, Schuster A, Sigal E (1991) Immunocytochemical localization of arachidonate 15-lipoxygenase in erythrocytes, leukocytes, and airway cells. J Clin Invest 87:1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Narumiya S, Salmon JA, Flower RJ, Vane JR (1982) Purification and properties of arachidonate-15-lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. Adv Prostaglandin Thromboxane Leukot Res 9:77–82

    CAS  PubMed  Google Scholar 

  71. Vanderhoek JY, Bailey JM (1984) Activation of a 15-lipoxygenase/leukotriene pathway in human polymorphonuclear leukocytes by the anti-inflammatory agent ibuprofen. J Biol Chem 259:6752–6756

    CAS  PubMed  Google Scholar 

  72. Levy BD, Romano M, Chapman HA, Reilly JJ, Drazen J, Serhan CN (1993) Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid and lipoxins. J Clin Invest 92:1572–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takayama H, Gimbrone MA Jr, Schafer AI (1987) Vascular lipoxygenase activity: synthesis of 15-hydroxyeicosatetraenoic acid from arachidonic acid by blood vessels and cultured vascular endothelial cells. Thromb Res 45:803–816

    Article  CAS  PubMed  Google Scholar 

  74. Lei ZM, Rao CV (1992) The expression of 15-lipoxygenase gene and the presence of functional enzyme in cytoplasm and nuclei of pregnancy human myometria. Endocrinology 130:861–870

    CAS  PubMed  Google Scholar 

  75. Giannopoulos PF, Joshi YB, Chu J, Pratico D (2013) The 12-15-lipoxygenase is a modulator of Alzheimer’s-related tau pathology in vivo. Aging Cell 12:1082–1090

    Article  CAS  PubMed  Google Scholar 

  76. Haynes RL, van Leyen K (2013) 12/15-lipoxygenase expression is increased in oligodendrocytes and microglia of periventricular leukomalacia. Dev Neurosci 35:140–154

    CAS  PubMed  Google Scholar 

  77. Yla-Herttuala S, Rosenfeld ME, Parthasarathy S, Glass CK, Sigal E, Witztum JL, Steinberg D (1990) Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl Acad Sci USA 87:6959–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Conrad DJ, Kuhn H, Mulkins M, Highland E, Sigal E (1992) Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci USA 89:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nassar GM, Morrow JD, Roberts LJ 2nd, Lakkis FG, Badr KF (1994) Induction of 15-lipoxygenase by interleukin-13 in human blood monocytes. J Biol Chem 269:27631–27634

    CAS  PubMed  Google Scholar 

  80. Chaitidis P, O’Donnell V, Kuban RJ, Bermudez-Fajardo A, Ungethuem U, Kuhn H (2005) Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13. Cytokine 30:366–377

    Article  CAS  PubMed  Google Scholar 

  81. Brinckmann R, Topp MS, Zalan I, Heydeck D, Ludwig P, Kuhn H, Berdel WE, Habenicht JR (1996) Regulation of 15-lipoxygenase expression in lung epithelial cells by interleukin-4. Biochem J 318(Pt 1):305–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shankaranarayanan P, Chaitidis P, Kuhn H, Nigam S (2001) Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J Biol Chem 276:42753–42760

    Article  CAS  PubMed  Google Scholar 

  83. Liu C, Schain F, Han H, Xu D, Andersson-Sand H, Forsell P, Claesson HE, Bjorkholm M, Sjoberg J (2012) Epigenetic and transcriptional control of the 15-lipoxygenase-1 gene in a Hodgkin lymphoma cell line. Exp Cell Res 318:169–176

    Article  CAS  PubMed  Google Scholar 

  84. Roy B, Cathcart MK (1998) Induction of 15-lipoxygenase expression by IL-13 requires tyrosine phosphorylation of Jak2 and Tyk2 in human monocytes. J Biol Chem 273:32023–32029

    Article  CAS  PubMed  Google Scholar 

  85. Xu B, Bhattacharjee A, Roy B, Feldman GM, Cathcart MK (2004) Role of protein kinase C isoforms in the regulation of interleukin-13-induced 15-lipoxygenase gene expression in human monocytes. J Biol Chem 279:15954–15960

    Article  CAS  PubMed  Google Scholar 

  86. Xu B, Bhattacharjee A, Roy B, Xu HM, Anthony D, Frank DA, Feldman GM, Cathcart MK (2003) Interleukin-13 induction of 15-lipoxygenase gene expression requires p38 mitogen-activated protein kinase-mediated serine 727 phosphorylation of Stat1 and Stat3. Mol Cell Biol 23:3918–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bhattacharjee A, Shukla M, Yakubenko VP, Mulya A, Kundu S, Cathcart MK (2013) IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 54:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kuhn H, O’Donnell VB (2006) Inflammation and immune regulation by 12/15-lipoxygenases. Prog Lipid Res 45:334–356

    Article  PubMed  CAS  Google Scholar 

  89. Tsao CH, Shiau MY, Chuang PH, Chang YH, Hwang J (2014) Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 55:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen B, Tsui S, Boeglin WE, Douglas RS, Brash AR, Smith TJ (2006) Interleukin-4 induces 15-lipoxygenase-1 expression in human orbital fibroblasts from patients with Graves disease. Evidence for anatomic site-selective actions of Th2 cytokines. J Biol Chem 281:18296–18306

    Article  CAS  PubMed  Google Scholar 

  91. Kelavkar UP, Wang S, Badr KF (2000) Ku autoantigen (DNA helicase) is required for interleukins-13/-4-induction of 15-lipoxygenase-1 gene expression in human epithelial cells. Genes Immun 1:237–250

    Article  CAS  PubMed  Google Scholar 

  92. Han H, Xu D, Liu C, Claesson HE, Bjorkholm M, Sjoberg J (2014) Interleukin-4-mediated 15-lipoxygenase-1 trans-activation requires UTX recruitment and H3K27me3 demethylation at the promoter in A549 cells. PLoS One 9:e85085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kühn H, Barnett J, Grunberger D, Baecker P, Chow J, Nguyen B, Bursztyn-Pettegrew H, Chan H, Sigal E (1993) Overexpression, purification and characterization of human recombinant 15-lipoxygenase. Biochim Biophys Acta 1169:80–89

    Article  PubMed  Google Scholar 

  94. Sloane DL, Dixon RA, Craik CS, Sigal E (1991) Expression of cloned human 15-lipoxygenase in eukaryotic and prokaryotic systems. Adv Prostaglandin Thromboxane Leukot Res 21A:25–28

    CAS  PubMed  Google Scholar 

  95. Sloane DL, Leung R, Barnett J, Craik CS, Sigal E (1995) Conversion of human 15-lipoxygenase to an efficient 12-lipoxygenase: the side-chain geometry of amino acids 417 and 418 determine positional specificity. Protein Eng 8:275–282

    Article  CAS  PubMed  Google Scholar 

  96. Sloane DL, Leung R, Craik CS, Sigal E (1991) A primary determinant for lipoxygenase positional specificity. Nature 354:149–152

    Article  CAS  PubMed  Google Scholar 

  97. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722

    Article  CAS  PubMed  Google Scholar 

  98. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, de Filippo C et al (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Chaitidis P, Adel S, Anton M, Heydeck D, Kuhn H, Horn T (2013) Lipoxygenase pathways in Homo neanderthalensis: functional comparison with Homo sapiens isoforms. J Lipid Res 54:1397–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Horn T, Reddy Kakularam K, Anton M, Richter C, Reddanna P, Kuhn H (2013) Functional characterization of genetic enzyme variations in human lipoxygenases. Redox Biol 1:566–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Johannesson M, Backman L, Claesson HE, Forsell PK (2010) Cloning, purification and characterization of non-human primate 12/15-lipoxygenases. Prostaglandins Leukot Essent Fatty Acids 82:121–129

    Article  CAS  PubMed  Google Scholar 

  102. Vogel R, Jansen C, Roffeis J, Reddanna P, Forsell P, Claesson HE, Kuhn H, Walther M (2010) Applicability of the triad concept for the positional specificity of mammalian lipoxygenases. J Biol Chem 285:5369–5376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Berger M, Schwarz K, Thiele H, Reimann I, Huth A, Borngraber S, Kuhn H, Thiele BJ (1998) Simultaneous expression of leukocyte-type 12-lipoxygenase and reticulocyte-type 15-lipoxygenase in rabbits. J Mol Biol 278:935–948

    Article  CAS  PubMed  Google Scholar 

  104. Funk CD, Chen XS, Johnson EN, Zhao L (2002) Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 68–69:303–312

    Article  PubMed  Google Scholar 

  105. Chen XS, Kurre U, Jenkins NA, Copeland NG, Funk CD (1994) cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure, and chromosomal localizations of murine 12-lipoxygenases. J Biol Chem 269:13979–13987

    CAS  PubMed  Google Scholar 

  106. Freire-Moar J, Alavi-Nassab A, Ng M, Mulkins M, Sigal E (1995) Cloning and characterization of a murine macrophage lipoxygenase. Biochim Biophys Acta 1254:112–116

    Article  PubMed  Google Scholar 

  107. Kinzig A, Fürstenberger G, Bürger F, Vogel S, Müller-Decker K, Mincheva A, Lichter P, Marks F, Krieg P (1997) Murine epidermal lipoxygenase (Aloxe) encodes a 12-lipoxygenase isoform. FEBS Lett 402:162–166

    Article  CAS  PubMed  Google Scholar 

  108. Watanabe T, Medina JF, Haeggstrom JZ, Radmark O, Samuelsson B (1993) Molecular cloning of a 12-lipoxygenase cDNA from rat brain. Eur J Biochem 212:605–612

    Article  CAS  PubMed  Google Scholar 

  109. Pekárová M, Kuhn H, Bezáková L, Ufer C, Heydeck D (2015) Mutagenesis of triad determinants of rat Alox15 alters the specificity of fatty acid and phospholipid oxygenation. Arch Biochem Biophys 571:50–507

    Article  PubMed  CAS  Google Scholar 

  110. Sloane DL, Browner MF, Dauter Z, Wilson K, Fletterick RJ, Sigal E (1990) Purification and crystallization of 15-lipoxygenase from rabbit reticulocytes. Biochem Biophys Res Commun 173:507–513

    Article  CAS  PubMed  Google Scholar 

  111. Gillmor SA, Villasenor A, Fletterick R, Sigal E, Browner MF (1997) The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat Struct Biol 4:1003–1009

    Article  CAS  PubMed  Google Scholar 

  112. Choi J, Chon JK, Kim S, Shin W (2008) Conformational flexibility in mammalian 15S-lipoxygenase: reinterpretation of the crystallographic data. Proteins 70:1023–1032

    Article  CAS  PubMed  Google Scholar 

  113. Walther M, Anton M, Wiedmann M, Fletterick R, Kuhn H (2002) The N-terminal domain of the reticulocyte-type 15-lipoxygenase is not essential for enzymatic activity but contains determinants for membrane binding. J Biol Chem 277:27360–27366

    Article  CAS  PubMed  Google Scholar 

  114. Walther M, Hofheinz K, Vogel R, Roffeis J, Kühn H (2011) The N-terminal β-barrel domain of mammalian lipoxygenases including mouse 5-lipoxygenase is not essential for catalytic activity and membrane binding but exhibits regulatory functions. Arch Biochem Biophys 516:1–9

    Article  CAS  PubMed  Google Scholar 

  115. Romanov S, Wiesner R, Myagkova G, Kuhn H, Ivanov I (2006) Affinity labeling of the rabbit 12/15-lipoxygenase using azido derivatives of arachidonic acid. Biochemistry 45:3554–3562

    Article  CAS  PubMed  Google Scholar 

  116. Hammel M, Walther M, Prassl R, Kuhn H (2004) Structural flexibility of the N-terminal beta-barrel domain of 15-lipoxygenase-1 probed by small angle X-ray scattering. Functional consequences for activity regulation and membrane binding. J Mol Biol 343:917–929

    Article  CAS  PubMed  Google Scholar 

  117. Shang W, Ivanov I, Svergun DI, Borbulevych OY, Aleem AM, Stehling S, Jankun J, Kuhn H, Skrzypczak-Jankun E (2011) Probing dimerization and structural flexibility of mammalian lipoxygenases by small-angle X-ray scattering. J Mol Biol 409:654–668

    Article  CAS  PubMed  Google Scholar 

  118. Di Venere A, Horn T, Stehling S, Mei G, Masgrau L, Gonzalez-Lafont A, Kuhn H, Ivanov I (2013) Role of Arg403 for thermostability and catalytic activity of rabbit 12/15-lipoxygenase. Biochim Biophys Acta 1831:1079–1088

    Article  PubMed  CAS  Google Scholar 

  119. Suardiaz R, Masgrau L, Lluch JM, Gonzalez-Lafont A (2014) Regio- and stereospecificity in the oxygenation of arachidonic acid catalyzed by Leu597 mutants of rabbit 15-lipoxygenase: a QM/MM study. Chemphyschem 15:2303–2310

    Article  CAS  PubMed  Google Scholar 

  120. Toledo L, Masgrau L, Lluch JM, Gonzalez-Lafont A (2011) Substrate binding to mammalian 15-lipoxygenase. J Comput Aided Mol Des 25:825–835

    Article  CAS  PubMed  Google Scholar 

  121. Xu S, Mueser TC, Marnett LJ, Funk MO Jr (2012) Crystal structure of 12-lipoxygenase catalytic-domain-inhibitor complex identifies a substrate-binding channel for catalysis. Structure 20:1490–1497

    Article  CAS  PubMed  Google Scholar 

  122. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    Article  CAS  PubMed  Google Scholar 

  123. Dainese E, Sabatucci A, van Zadelhoff G, Angelucci CB, Vachette P, Veldink GA, Agro AF, Maccarrone M (2005) Structural stability of soybean lipoxygenase-1 in solution as probed by small angle X-ray scattering. J Mol Biol 349:143–152

    Article  CAS  PubMed  Google Scholar 

  124. Moin ST, Hofer TS, Sattar R, Ul-Haq Z (2011) Molecular dynamics simulation of mammalian 15S-lipoxygenase with AMBER force field. Eur Biophys J 40:715–726

    Article  CAS  PubMed  Google Scholar 

  125. Ivanov I, Shang W, Toledo L, Masgrau L, Svergun DI, Stehling S, Gomez H, Di Venere A, Mei G, Lluch JM et al (2012) Ligand-induced formation of transient dimers of mammalian 12/15-lipoxygenase: a key to allosteric behavior of this class of enzymes? Proteins 80:703–712

    Article  CAS  PubMed  Google Scholar 

  126. Schewe T (2002) 15-lipoxygenase-1: a prooxidant enzyme. Biol Chem 383:365–374

    Article  CAS  PubMed  Google Scholar 

  127. Bryant RW, Schewe T, Rapoport SM, Bailey JM (1985) Leukotriene formation by a purified reticulocyte lipoxygenase enzyme. Conversion of arachidonic acid and 15-hydroperoxyeicosatetraenoic acid to 14, 15-leukotriene A4. J Biol Chem 260:3548–3555

    CAS  PubMed  Google Scholar 

  128. Brash AR, Yokoyama C, Oates JA, Yamamoto S (1989) Mechanistic studies of the dioxygenase and leukotriene synthase activities of the porcine leukocyte 12S-lipoxygenase. Arch Biochem Biophys 273:414–422

    Article  CAS  PubMed  Google Scholar 

  129. Ivanov I, Saam J, Kuhn H, Holzhutter HG (2005) Dual role of oxygen during lipoxygenase reactions. FEBS J 272:2523–2535

    Article  CAS  PubMed  Google Scholar 

  130. Zheng Y, Brash AR (2010) On the role of molecular oxygen in lipoxygenase activation: comparison and contrast of epidermal lipoxygenase-3 with soybean lipoxygenase-1. J Biol Chem 285:39876–39887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Toledo L, Masgrau L, Maréchal JD, Lluch JM, González-Lafont A (2010) Insights into the mechanism of binding of arachidonic acid to mammalian 15-lipoxygenases. J Phys Chem B 114:7037–7046

    Article  CAS  PubMed  Google Scholar 

  132. Schwarz K, Borngraber S, Anton M, Kuhn H (1998) Probing the substrate alignment at the active site of 15-lipoxygenases by targeted substrate modification and site-directed mutagenesis. Evidence for an inverse substrate orientation. Biochemistry 37:15327–15335

    Article  CAS  PubMed  Google Scholar 

  133. Kuhn H, Schewe T, Rapoport SM (1986) The stereochemistry of the reactions of lipoxygenases and their metabolites. Proposed nomenclature of lipoxygenases and related enzymes. Adv Enzymol Relat Areas Mol Biol 58:273–311

    CAS  PubMed  Google Scholar 

  134. Van Os CP, Rijke-Schilder GP, Van Halbeek H, Verhagen J, Vliegenthart JF (1981) Double dioxygenation of arachidonic acid by soybean lipoxygenase-1. Kinetics and regio-stereo specificities of the reaction steps. Biochim Biophys Acta 663:177–193

    Article  PubMed  Google Scholar 

  135. Serhan CN, Petasis NA (2011) Resolvins and protectins in inflammation resolution. Chem Rev 111:5922–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yamamoto S, Ueda N, Yokoyama C, Fitzsimmons BJ, Rokach J, Oates JA, Brash AR (1988) Lipoxin syntheses by arachidonate 12- and 5-lipoxygenases purified from porcine leukocytes. Adv Exp Med Biol 229:15–26

    CAS  PubMed  Google Scholar 

  137. Belkner J, Wiesner R, Kuhn H, Lankin VZ (1991) The oxygenation of cholesterol esters by the reticulocyte lipoxygenase. FEBS Lett 279:110–114

    Article  CAS  PubMed  Google Scholar 

  138. Kuhn H, Brash AR (1990) Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. J Biol Chem 265:1454–1458

    CAS  PubMed  Google Scholar 

  139. van Leyen K, Duvoisin RM, Engelhardt H, Wiedmann M (1998) A function for lipoxygenase in programmed organelle degradation. Nature 395:392–395

    Article  PubMed  Google Scholar 

  140. Belkner J, Stender H, Kuhn H (1998) The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J Biol Chem 273:23225–23232

    Article  CAS  PubMed  Google Scholar 

  141. Upston JM, Neuzil J, Witting PK, Alleva R, Stocker R (1997) Oxidation of free fatty acids in low density lipoprotein by 15-lipoxygenase stimulates nonenzymic, alpha-tocopherol-mediated peroxidation of cholesteryl esters. J Biol Chem 272:30067–30074

    Article  CAS  PubMed  Google Scholar 

  142. Cyrus T, Witztum JL, Rader DJ, Tangirala R, Fazio S, Linton MF, Funk CD (1999) Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 103:1597–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. George J, Afek A, Shaish A, Levkovitz H, Bloom N, Cyrus T, Zhao L, Funk CD, Sigal E, Harats D (2001) 12/15-lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation 104:1646–1650

    Article  CAS  PubMed  Google Scholar 

  144. Zhao L, Pratico D, Rader DJ, Funk CD (2005) 12/15-lipoxygenase gene disruption and vitamin E administration diminish atherosclerosis and oxidative stress in apolipoprotein E deficient mice through a final common pathway. Prostaglandins Other Lipid Mediat 78:185–193

    Article  CAS  PubMed  Google Scholar 

  145. Garssen GJ, Vliegenthart JF, Boldingh J (1971) An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxides. Biochem J 122:327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. de Groot JJ, Garssen GJ, Vliegenthart JF, Boldingh J (1973) The detection of linoleic acid radicals in the anaerobic reaction of lipoxygenase. Biochim Biophys Acta 326:279–284

    Article  PubMed  Google Scholar 

  147. Garssen GJ, Vliegenthart JF, Boldingh J (1972) The origin and structures of dimeric fatty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem J 130:435–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Streckert G, Stan HJ (1975) Conversion of linoleic acid hydroperoxide by soybean lipoxygenase in the presence of guaiacol: identification of the reaction products. Lipids 10:847–854

    Article  CAS  PubMed  Google Scholar 

  149. Zheng Y, Brash AR (2010) Dioxygenase activity of epidermal lipoxygenase-3 unveiled: typical and atypical features of its catalytic activity with natural and synthetic polyunsaturated fatty acids. J Biol Chem 285:39866–39875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Munoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR (2014) The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta 1841:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Salzmann U, Kuhn H, Schewe T, Rapoport SM (1984) Pentane formation during the anaerobic reactions of reticulocyte lipoxygenase. Comparison with lipoxygenases from soybeans and green pea seeds. Biochim Biophys Acta 795:535–542

    Article  CAS  PubMed  Google Scholar 

  152. Belkner J, Kuhn H, Wiesner R (1990) Oxygenation of biological membranes by the reticulocyte lipoxygenase. Lack of stoichiometry between oxygen uptake and product formation. Biomed Biochim Acta 49:S31–34

    CAS  PubMed  Google Scholar 

  153. Kuhn H, Salzmann-Reinhardt U, Ludwig P, Ponicke K, Schewe T, Rapoport S (1986) The stoichiometry of oxygen uptake and conjugated diene formation during the dioxygenation of linoleic acid by the pure reticulocyte lipoxygenase. Evidence for aerobic hydroperoxidase activity. Biochim Biophys Acta 876:187–193

    Article  CAS  PubMed  Google Scholar 

  154. Maas RL, Brash AR (1983) Evidence for a lipoxygenase mechanism in the biosynthesis of epoxide and dihydroxy leukotrienes from 15(S)-hydroperoxyicosatetraenoic acid by human platelets and porcine leukocytes. Proc Natl Acad Sci USA 80:2884–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yamamoto S, Ueda N, Yokoyama C, Kaneko S, Shinjo F, Yoshimoto T, Oates JA, Brash AR, Fitzsimmons BJ, Rokach J (1987) Dioxygenase and leukotriene A synthase activities of arachidonate 5- and 12-lipoxygenases purified from porcine leukocytes. Adv Prostaglandin Thromboxane Leukot Res 17A:55–59

    CAS  PubMed  Google Scholar 

  156. Brash AR, Ingram CD, Harris TM (1987) Analysis of a specific oxygenation reaction of soybean lipoxygenase-1 with fatty acids esterified in phospholipids. Biochemistry 26:5465–5471

    Article  CAS  PubMed  Google Scholar 

  157. Saam J, Ivanov I, Walther M, Holzhutter HG, Kuhn H (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci USA 104:13319–13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Knapp MJ, Klinman JP (2003) Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. Biochemistry 42:11466–11475

    Article  CAS  PubMed  Google Scholar 

  159. Knapp MJ, Seebeck FP, Klinman JP (2001) Steric control of oxygenation regiochemistry in soybean lipoxygenase-1. J Am Chem Soc 123:2931–2932

    Article  CAS  PubMed  Google Scholar 

  160. Cohen J, Arkhipov A, Braun R, Schulten K (2006) Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. Biophys J 91:1844–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Kühn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kühn, H., Karst, F., Heydeck, D. (2016). Catalytic Multiplicity of 15-Lipoxygenase-1 Orthologs (ALOX15) of Different Species. In: Steinhilber, D. (eds) Lipoxygenases in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-27766-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27766-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27764-6

  • Online ISBN: 978-3-319-27766-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics