Advertisement

Leukotriene A4 Hydrolase and Leukotriene C4 Synthase

  • Agnes Rinaldo-Matthis
  • Jesper Z. HaeggströmEmail author
Chapter
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Leukotrienes are potent proinflammatory and immune modulating lipid mediators synthesized along the 5-lipoxygenase pathway of arachidonic acid metabolism. Leukotriene B4 is one of the most potent chemotactic agents known while leukotriene C4, D4, and E4 are a powerful smooth muscle contracting agents, particularly in the respiratory tract and microcirculation. The committed steps in the biosynthesis of leukotriene B4 and C4 are catalyzed by the key enzymes leukotriene A 4 hydrolase and leukotriene C 4 synthase, respectively. In this chapter we discuss the most recent advances in the understanding of these two enzymes at a structural, functional, and biological level.

Keywords

Leukotriene A4 hydrolase Leukotriene C4 synthase MAPEG protein family Glutathione Inflammation Crystal structure 

References

  1. 1.
    Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111:5866–5898CrossRefPubMedGoogle Scholar
  2. 2.
    Haeggstrom JZ, Rinaldo-Matthis A, Wheelock CE, Wetterholm A (2010) Advances in eicosanoid research, novel therapeutic implications. Biochem Biophys Res Commun 396:135–139CrossRefPubMedGoogle Scholar
  3. 3.
    Martinez Molina D, Wetterholm A, Kohl A, McCarthy AA, Niegowski D, Ohlson E, Hammarberg T, Eshaghi S, Haeggström JZ, Nordlund P (2007) Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature 448:613–616CrossRefPubMedGoogle Scholar
  4. 4.
    Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, Miyano M (2007) Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 448:609–612CrossRefPubMedGoogle Scholar
  5. 5.
    Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A, Gaggar A, Shastry S, Rowe SM, Shim YM, Hussell T, Blalock JE (2010) A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330:90–94CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Thunnissen MM, Nordlund P, Haeggström JZ (2001) Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation. Nat Struct Biol 8:131–135CrossRefPubMedGoogle Scholar
  7. 7.
    Tholander F, Muroya A, Roques BP, Fournié-Zaluski MC, Thunnissen MM, Haeggström JZ (2008) Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Chem Biol 15:920–929CrossRefPubMedGoogle Scholar
  8. 8.
    Ford-Hutchinson AW (1990) Leukotriene B4 in inflammation. Crit Rev Immunol 10:1–12PubMedGoogle Scholar
  9. 9.
    Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:568–575CrossRefPubMedGoogle Scholar
  10. 10.
    Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237:1171–1176CrossRefPubMedGoogle Scholar
  11. 11.
    Snelgrove RJ (2011) Leukotriene A4 hydrolase: an anti-inflammatory role for a proinflammatory enzyme. Thorax 66:550–551CrossRefPubMedGoogle Scholar
  12. 12.
    Haeggström JZ (1998) Leukotriene A4 hydrolase. In: Holgate S, Dahlen S-E (eds) 5-lipoxygenase products in asthma. Marcel Dekker, New York, NY, pp 51–76CrossRefGoogle Scholar
  13. 13.
    Stsiapanava A, Tholander F, Kumar RB, Qureshi AA, Niegowski D, Hasan M, Thunnissen M, Haeggstrom JZ, Rinaldo-Matthis A (2014) Product formation controlled by substrate dynamics in leukotriene A4 hydrolase. Biochim Biophys Acta 1844:439–446CrossRefPubMedGoogle Scholar
  14. 14.
    Helgstrand C, Hasan M, Uysal H, Haeggstrom JZ, Thunnissen MM (2011) A leukotriene A4 hydrolase-related aminopeptidase from yeast undergoes induced fit upon inhibitor binding. J Mol Biol 406:120–134CrossRefPubMedGoogle Scholar
  15. 15.
    Sala A, Folco G, Murphy RC (2010) Transcellular biosynthesis of eicosanoids. Pharmacol Rep 62:503–510CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Barret AJ, Rawlings ND, Woessner JF (eds) (1998) Handbook of proteolytic enzymes. Academic, London, San DiegoGoogle Scholar
  17. 17.
    Haeggstrom JZ (2000) Structure, function, and regulation of leukotriene A4 hydrolase. Am J Respir Crit Care Med 161:S25–31CrossRefPubMedGoogle Scholar
  18. 18.
    Orning L, Gierse J, Duffin K, Bild G, Krivi G, Fitzpatrick FA (1992) Mechanism-based inactivation of leukotriene A4 hydrolase/aminopeptidase by leukotriene A4. Mass spectrometric and kinetic characterization. J Biol Chem 267:22733–22739PubMedGoogle Scholar
  19. 19.
    Stsiapanava A, Olsson U, Wan M, Kleinschmidt T, Rutishauser D, Zubarev RA, Samuelsson B, Rinaldo-Matthis A, Haeggstrom JZ (2014) Binding of Pro-Gly-Pro at the active site of leukotriene A4 hydrolase/aminopeptidase and development of an epoxide hydrolase selective inhibitor. Proc Natl Acad Sci USA 111:4227–4232CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Byrum RS, Goulet JL, Snouwaert JN, Griffiths RJ, Koller BH (1999) Determination of the contribution of cysteinyl leukotrienes and leukotriene B4 in acute inflammatory responses using 5-lipoxygenase- and leukotriene A4 hydrolase-deficient mice. J Immunol 163:6810–6819PubMedGoogle Scholar
  21. 21.
    Barchuk W, Lambert J, Fuhr R, Jiang JZ, Bertelsen K, Fourie A, Liu X, Silkoff PE, Barnathan ES, Thurmond R (2014) Effects of JNJ-40929837, a leukotriene A4 hydrolase inhibitor, in a bronchial allergen challenge model of asthma. Pulm Pharmacol Ther 29:15–23CrossRefPubMedGoogle Scholar
  22. 22.
    Lam BK, Owen WF Jr, Austen KF, Soberman RJ (1989) The identification of a distinct export step following the biosynthesis of leukotriene C4 by human eosinophils. J Biol Chem 264:12885–12889PubMedGoogle Scholar
  23. 23.
    Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269:27807–27810PubMedGoogle Scholar
  24. 24.
    Wijnholds J, Evers R, van Leusden MR, Mol CA, Zaman GJ, Mayer U, Beijnen JH, van der Valk M, Krimpenfort P, Borst P (1997) Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 3:1275–1279CrossRefPubMedGoogle Scholar
  25. 25.
    Murphy RC, Sala A, Voelkel N, Maclouf J (1991) Appearance of urinary metabolites of LTE4 in human subjects. Ann N Y Acad Sci 629:105–111CrossRefPubMedGoogle Scholar
  26. 26.
    Feldberg W, Kellaway CH (1938) Liberation of histamine and formation of lysocithin-like substances by cobra venom. J Physiol 94:187–226CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Murphy RC, Hammarstrom S, Samuelsson B (1979) Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 76:4275–4279CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lam BK, Austen KF (2002) Leukotriene C4 synthase: a pivotal enzyme in cellular biosynthesis of the cysteinyl leukotrienes. Prostaglandins Other Lipid Mediat 68–69:511–520CrossRefPubMedGoogle Scholar
  29. 29.
    Soderstrom M, Mannervik B, Garkov V, Hammarstrom S (1992) On the nature of leukotriene C4 synthase in human platelets. Arch Biochem Biophys 294:70–74CrossRefPubMedGoogle Scholar
  30. 30.
    Mandal AK, Jones PB, Bair AM, Christmas P, Miller D, Yamin TT, Wisniewski D, Menke J, Evans JF, Hyman BT, Bacskai B, Chen M, Lee DM, Nikolic B, Soberman RJ (2008) The nuclear membrane organization of leukotriene synthesis. Proc Natl Acad Sci USA 105:20434–20439CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Christmas P, Weber BM, McKee M, Brown D, Soberman RJ (2002) Membrane localization and topology of leukotriene C4 synthase. J Biol Chem 277:28902–28908CrossRefPubMedGoogle Scholar
  32. 32.
    Strid T, Svartz J, Franck N, Hallin E, Ingelsson B, Soderstrom M, Hammarstrom S (2009) Distinct parts of leukotriene C4 synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein. Biochem Biophys Res Commun 381:518–522CrossRefPubMedGoogle Scholar
  33. 33.
    Nakamura M, Shimizu T (2011) Leukotriene receptors. Chem Rev 111:6231–6298CrossRefPubMedGoogle Scholar
  34. 34.
    Lynch KR, O'Neill GP, Liu Q, Im DS, Sawyer N, Metters KM, Coulombe N, Abramovitz M, Figueroa DJ, Zeng Z, Connolly BM, Bai C, Austin CP, Chateauneuf A, Stocco R, Greig GM, Kargman S, Hooks SB, Hosfield E, Williams DL Jr, Ford-Hutchinson AW, Caskey CT, Evans JF (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399:789–793CrossRefPubMedGoogle Scholar
  35. 35.
    Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O'Neill GP, Metters KM, Lynch KR, Evans JF (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275:30531–30536CrossRefPubMedGoogle Scholar
  36. 36.
    Kanaoka Y, Maekawa A, Austen KF (2013) Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. J Biol Chem 288:10967–10972CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Boyce JA, Lam BK, Penrose JF, Friend DS, Parsons S, Owen WF, Austen KF (1996) Expression of LTC4 synthase during the development of eosinophils in vitro from cord blood progenitors. Blood 88:4338–4347PubMedGoogle Scholar
  38. 38.
    Schroder O, Sjostrom M, Qiu H, Jakobsson PJ, Haeggstrom JZ (2005) Microsomal glutathione S-transferases: selective up-regulation of leukotriene C4 synthase during lipopolysaccharide-induced pyresis. Cell Mol Life Sci 62:87–94CrossRefPubMedGoogle Scholar
  39. 39.
    Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA (2001) T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C4 synthase expression by interleukin 4. J Exp Med 193:123–133CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ali A, Ford-Hutchinson AW, Nicholson DW (1994) Activation of protein kinase C down-regulates leukotriene C4 synthase activity and attenuates cysteinyl leukotriene production in an eosinophilic substrain of HL-60 cells. J Immunol 153:776–788PubMedGoogle Scholar
  41. 41.
    Sjolinder M, Tornhamre S, Werga P, Edenius C, Lindgren JA (1995) Phorbol ester-induced suppression of leukotriene C4 synthase activity in human granulocytes. FEBS Lett 377:87–91CrossRefPubMedGoogle Scholar
  42. 42.
    Tornhamre S, Edenius C, Lindgren JA (1995) Receptor-mediated regulation of leukotriene C4 synthase activity in human platelets. Eur J Biochem/FEBS 234:513–520CrossRefGoogle Scholar
  43. 43.
    Esser J, Gehrmann U, Salvado MD, Wetterholm A, Haeggstrom JZ, Samuelsson B, Gabrielsson S, Scheynius A, Radmark O (2011) Zymosan suppresses leukotriene C4 synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J 25:1417–1427CrossRefPubMedGoogle Scholar
  44. 44.
    Ahmad S, Niegowski D, Wetterholm A, Haeggstrom JZ, Morgenstern R, Rinaldo-Matthis A (2013) Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps. Biochemistry 52:1755–1764CrossRefPubMedGoogle Scholar
  45. 45.
    Bresell A, Weinander R, Lundqvist G, Raza H, Shimoji M, Sun TH, Balk L, Wiklund R, Eriksson J, Jansson C, Persson B, Jakobsson PJ, Morgenstern R (2005) Bioinformatic and enzymatic characterization of the MAPEG superfamily. FEBS J 272:1688–1703CrossRefPubMedGoogle Scholar
  46. 46.
    Holm P, Morgenstern R, Fujiyoshi Y, Hebert H (2001) The 3-D structure of microsomal glutathione transferase 1 at 6 angstrom resolution as determined by electron crystallography of p22(1)2(1) crystals. Chem-Biol Interact 133:68–70Google Scholar
  47. 47.
    Ferguson AD, McKeever BM, Xu S, Wisniewski D, Miller DK, Yamin TT, Spencer RH, Chu L, Ujjainwalla F, Cunningham BR, Evans JF, Becker JW (2007) Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317:510–512CrossRefPubMedGoogle Scholar
  48. 48.
    Sjogren T, Nord J, Ek M, Johansson P, Liu G, Geschwindner S (2013) Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily. Proc Natl Acad Sci USA 110:3806–3811CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rinaldo-Matthis A, Wetterholm A, Molina DM, Holm J, Niegowski D, Ohlson E, Nordlund P, Morgenstern R, Haeggstrom JZ (2010) Arginine 104 is a key catalytic residue in leukotriene C4 synthase. J Biol Chem 285:40771–40776CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Saino H, Ago H, Ukita Y, Miyano M (2011) Seleno-detergent MAD phasing of leukotriene C4 synthase in complex with dodecyl-beta-D-selenomaltoside. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1666–1673CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Niegowski D, Kleinschmidt T, Olsson U, Ahmad S, Rinaldo-Matthis A, Haeggstrom JZ (2014) Crystal structures of leukotriene C4 synthase in complex with product analogs, implications for the enzyme mechanism. J Biol Chem 289:5199–5207Google Scholar
  52. 52.
    Rinaldo-Matthis A, Ahmad S, Wetterholm A, Lachmann P, Morgenstern R, Haeggstrom JZ (2012) Pre-steady-state kinetic characterization of thiolate anion formation in human leukotriene C4 synthase. Biochemistry 51:848–856CrossRefPubMedGoogle Scholar
  53. 53.
    Saino H, Ukita Y, Ago H, Irikura D, Nisawa A, Ueno G, Yamamoto M, Kanaoka Y, Lam BK, Austen KF, Miyano M (2011) The catalytic architecture of leukotriene C4 synthase with two arginine residues. J Biol Chem 286:16392–16401CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Niegowski D, Kleinschmidt T, Ahmad S, Qureshi AA, Marback M, Rinaldo-Matthis A, Haeggstrom JZ (2014) Structure and inhibition of mouse leukotriene C4 synthase. PLoS One 9:e96763CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hay DW, Torphy TJ, Undem BJ (1995) Cysteinyl leukotrienes in asthma: old mediators up to new tricks. Trends Pharmacol Sci 16:304–309CrossRefPubMedGoogle Scholar
  56. 56.
    Amat M, Barcons M, Mancebo J, Mateo J, Oliver A, Mayoral JF, Fontcuberta J, Vila L (2000) Evolution of leukotriene B4, peptide leukotrienes, and interleukin-8 plasma concentrations in patients at risk of acute respiratory distress syndrome and with acute respiratory distress syndrome: mortality prognostic study. Crit Care Med 28:57–62CrossRefPubMedGoogle Scholar
  57. 57.
    Matthay MA, Eschenbacher WL, Goetzl EJ (1984) Elevated concentrations of leukotriene D4 in pulmonary edema fluid of patients with the adult respiratory distress syndrome. J Clin Immunol 4:479–483CrossRefPubMedGoogle Scholar
  58. 58.
    Petric R, Ford-Hutchinson A (1995) Inhibition of leukotriene biosynthesis improves renal function in experimental glomerulonephritis. J Lipid Mediat Cell Signal 11:231–240CrossRefPubMedGoogle Scholar
  59. 59.
    Al-Amran FG, Hadi NR, Hashim AM (2011) Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats. J Cardiothorac Surg 6:81CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sun LH, Chen AH, Yang ZF, Chen JJ, Guan WD, Wu JL, Qin S, Zhong NS (2013) Respiratory syncytial virus induces leukotriene C4 synthase expression in bronchial epithelial cells. Respirology 18 Suppl 3:40–46CrossRefPubMedGoogle Scholar
  61. 61.
    Szczeklik A, Stevenson DD (1999) Aspirin-induced asthma: advances in pathogenesis and management. J Allergy Clin Immunol 104:5–13CrossRefPubMedGoogle Scholar
  62. 62.
    Lam BK, Austen KF (2002) Leukotriene C4 synthase: a pivotal enzyme in cellular biosynthesis of the cysteinyl leukotrienes. Prostaglandins Other Lipid Mediat 68–69:511–520CrossRefPubMedGoogle Scholar
  63. 63.
    Devi NS, Doble M (2012) Leukotriene C4 synthase: upcoming drug target for inflammation. Curr Drug Targets 13:1107–1118CrossRefPubMedGoogle Scholar
  64. 64.
    Tornhamre S, Schmidt TJ, Nasman-Glaser B, Ericsson I, Lindgren JA (2001) Inhibitory effects of helenalin and related compounds on 5-lipoxygenase and leukotriene C4 synthase in human blood cells. Biochem Pharmacol 62:903–911CrossRefPubMedGoogle Scholar
  65. 65.
    Mansour M, Tornhamre S (2004) Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J Enzyme Inhib Med Chem 19:431–436CrossRefPubMedGoogle Scholar
  66. 66.
    El Gazzar M, El Mezayen R, Nicolls MR, Marecki JC, Dreskin SC (2006) Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochim Biophys Acta 1760:1088–1095CrossRefPubMedGoogle Scholar
  67. 67.
    Lam BK, Penrose JF, Freeman GJ, Austen KF (1994) Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4. Proc Natl Acad Sci USA 91:7663–7667CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gugliucci A, Ranzato L, Scorrano L, Colonna R, Petronilli V, Cusan C, Prato M, Mancini M, Pagano F, Bernardi P (2002) Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J Biol Chem 277:31789–31795CrossRefPubMedGoogle Scholar
  69. 69.
    Lyss G, Knorre A, Schmidt TJ, Pahl HL, Merfort I (1998) The anti-inflammatory sesquiterpene lactone helenalin inhibits the transcription factor NF-kappaB by directly targeting p65. J Biol Chem 273:33508–33516CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden

Personalised recommendations