Skip to main content

Global Attractors and a Lubrication Problem

  • Chapter
  • First Online:
Navier–Stokes Equations

Part of the book series: Advances in Mechanics and Mathematics ((AMMA))

  • 3850 Accesses

Abstract

We start this chapter from necessary background on the theory of fractal dimension. Next, we formulate and study a problem which models the two-dimensional boundary driven shear flow in lubrication theory. After the derivation of the energy dissipation rate estimate and a version of Lieb–Thirring inequality we provide an estimate from above on the global attractor fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Chepyzhov, A.A. Ilyin, A note on the fractal dimension of attractors of dissipative dynamical systems. Nonlinear Anal. 44, 811–819 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. V.V. Chepyzhov, A.A. Ilyin, On the fractal dimension of invariant sets; applications to Navier–Stokes equations. Discrete Cont. Dyn. Syst. 10, 117–135 (2004)

    MathSciNet  MATH  Google Scholar 

  3. V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics (American Mathematical Society, Providence, RI, 2002)

    MATH  Google Scholar 

  4. I.D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems (Acta, Kharkov, 1999) (Russian). English transl.: Acta, Kharkov, 2002

    Google Scholar 

  5. P. Constantin, C. Foiaş, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations. Commun. Pure Appl. Math. 38, 1–27 (1985)

    Article  MATH  Google Scholar 

  6. Ch.R. Doering, P. Constantin, Energy dissipation in shear driven turbulence. Phys. Rev. Lett. 69, 1648–1651 (1991)

    Article  Google Scholar 

  7. Ch.R. Doering, J.D. Gibbon, Applied Analysis of the Navier-Stokes Equations (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  8. Ch.R. Doering, X. Wang, Attractor dimension estimates for two-dimensional shear flows. Phys. D 123, 206–222 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Foiaş, O.P. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  10. B.R. Hunt, V.Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces. Nonlinearity 12, 1263–1275 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. R.R. Kerswell, Unification of variational principles for turbulent shear flows: the background method of Doering-Constantin and the mean-fluctuation formulation of Howard-Busse. Phys. D 121, 175–192 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. O.A. Ladyzhenskaya, Finite-dimensionality of bounded invariant sets for Navier–Stokes systems and other dissipative systems. J. Soviet Math. 28, 714–726 (1985)

    Article  MATH  Google Scholar 

  13. J. Málek, D. Pražák, Large time behavior via the method of l-trajectories. J. Differ. Equ. 181, 243–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Miranville, X. Wang, Attractor for nonautonomous nonhomogeneous Navier-Stokes equations. Nonlinearity 10, 1047–1061 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Miranville, M. Ziane, On the dimension of the attractor for the Bénard problem with free surfaces. Russ. J. Math. Phys. 5, 489–502 (1997)

    MathSciNet  MATH  Google Scholar 

  16. J.C. Robinson, Infinite-Dimensional Dynamical Systems (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  17. J.C. Robinson, Dimensions, Embeddings, and Attractors (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  18. J.C. Robinson, Attractors and finite-dimensional behaviour in the 2D Navier-Stokes Equations. ISRN Math. Anal. 2013, 29 pp. (2013). Article ID 291823

    Google Scholar 

  19. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, 3rd revised edn. (North-Holland, Amsterdam, New York, Oxford, 1984)

    Google Scholar 

  20. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  21. R. Temam, M. Ziane, Navier–Stokes equations in three-dimensional thin domains with various boundary conditions. Adv. Differ. Equ. 1, 499–546 (1996)

    MathSciNet  MATH  Google Scholar 

  22. X. Wang, Time averaged energy dissipation rate for shear driven flows in \(\mathbb{R}^{n}\). Phys. D 99, 555–563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Wang, Effect of tangential derivative in the boundary layer on time averaged energy dissipation rate. Phys. D 144, 142–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Zelik, The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and it’s dimension. Rend. Acad. Naz. Sci. XL Mem. Mat. Appl. 24, 1–25 (2000)

    MathSciNet  Google Scholar 

  25. M. Ziane, Optimal bounds on the dimension of the attractor of the Navier-Stokes equations. Phys. D 105, 1–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Ziane, On the 2D-Navier-Stokes equations with the free boundary condition. Appl. Math. Opt. 38, 1–19 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Łukaszewicz, G., Kalita, P. (2016). Global Attractors and a Lubrication Problem. In: Navier–Stokes Equations. Advances in Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-27760-8_9

Download citation

Publish with us

Policies and ethics