Skip to main content

Evolutionary Systems and the Navier–Stokes Equations

  • Chapter
  • First Online:
Navier–Stokes Equations

Part of the book series: Advances in Mechanics and Mathematics ((AMMA))

  • 3808 Accesses

Abstract

This chapter is devoted to the study of three-dimensional nonstationary Navier–Stokes equations with the multivalued frictional boundary condition. We use the formalism of evolutionary systems to prove the existence of weak global attractor for the studied problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.V. Babin, M.I. Vishik, Maximal attractors of semigroups corresponding to evolution differential equations. Math. USSR Sb. 54, 387–408 (1986)

    Article  MATH  Google Scholar 

  2. J.M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations. Nonlinear Sci. 7, 475–502 (1997). Erratum, ibid 8 (1998) 233. Corrected version appears in “Mechanics: from Theory to Computation” (Springer, Berlin, 2000), pp. 447–474

    Google Scholar 

  3. L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. C.S. Cao, E.S. Titi, Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Caraballo, P. Marín-Rubio, J.C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour. Set-Valued Anal. 11, 297–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Caraballo, G. Łukaszewicz, J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. Theory 64, 484–498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Caraballo, P.E. Kloeden, J. Real, Invariant measures and statistical solutions of the globally modified Navier–Stokes equations. Discrete Cont. Dyn. B 10, 761–781 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Caraballo, J. Real, A.M. Márquez, Three-dimensional system of globally modified Navier–Stokes equations with delay. Int. J. Bifurcation Chaos 20, 2869–2883 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. V.V. Chepyzhov, M.I. Vishik, Trajectory attractors for evolution equations. C. R. Acad. Sci. I Math. 321, 1309–1314 (1995)

    MathSciNet  MATH  Google Scholar 

  10. V.V. Chepyzhov, E.S. Titi, M.I. Vishik, On the convergence of solutions of the Leray-alpha model to the trajectory attractor of the 3D Navier-Stokes system. Discrete Cont. Dyn. Syst. 17, 481–500 (2007)

    MathSciNet  MATH  Google Scholar 

  11. S.I. Chernyshenko, P. Constantin, J.C. Robinson, E.S. Titi, A posteriori regularity of the three-dimensional Navier–Stokes equations from numerical computations. J. Math. Phys. 48 (2007). Article ID: 065204

    Google Scholar 

  12. A. Cheskidov, Global attractors of evolution systems. J. Dyn. Diff. Equ. 21, 249–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Cheskidov, C. Foiaş, On global attractors of the 3D Navier–Stokes equations. J. Differ. Equ. 231, 714–754 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Cheskidov, S. Friedlander, R. Shvydkoy, On the energy equality for weak solutions of the 3D Navier–Stokes equations, in Advances in Mathematical Fluid Mechanics, ed. by R. Rannacher, A. Sequeira, Springer Berlin, Heidelberg (2010), pp. 171–175

    Google Scholar 

  15. P. Constantin, C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier–Stokes equations. Indiana Univ. Math. J. 42, 775–789 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Dashti, J.C. Robinson, A simple proof of uniqueness of the particle trajectories for solutions of the Navier–Stokes equations. Nonlinearity 22, 735–746 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Dłotko, New look at the Navier–Stokes equation (2015). arXiv:1501.02085

    Google Scholar 

  18. C. Foiaş, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Foiaş, O.P. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  20. C. Foiaş, D.D. Holm, E.S. Titi, The Navier–Stokes-alpha model of fluid turbulence. Phys. D 152, 505–519 (2001)

    MathSciNet  MATH  Google Scholar 

  21. C. Foiaş, R. Rosa, R. Temam, Topological properties of the weak global attractor of the three-dimensional Navier–Stokes equations. Discrete Cont. Dyn. Syst. 27, 1611–1631 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Hopf, Uber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  23. O.V. Kapustyan, J. Valero, Weak and strong attractors for the 3D Navier–Stokes system. J. Differ. Equ. 240, 249–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. O.V. Kapustyan, J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions. Int. J. Bifurcation Chaos 20, 2723–2734 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. P.E. Kloeden, J. Valero, The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier–Stokes equations. Proc. R. Soc. Lond. Ser. A 463, 1491–1508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. P.E. Kloeden, J.A. Langa, J. Real, Pullback V-attractors of the 3-dimensional globally modified Navier–Stokes equations. Commun. Pure Appl. Anal. 6, 937–955 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. P.E. Kloeden, P. Marín-Rubio, J. Valero, The envelope attractor of non-strict multivalued dynamical systems with application to the 3D Navier–Stokes and reaction-diffusion equations. Set-Valued Var. Anal. 21, 517–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Kukavica, M. Ziane, One component regularity for the Navier–Stokes equations. Nonlinearity 19, 453–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Kukavica, M. Ziane, Navier–Stokes equations with regularity in one direction. J. Math. Phys. 48 (2007). Article ID: 065203

    Google Scholar 

  30. J. Leray, Sur le mouvement d’un liquide visquex emplissent l’espace. Acta Math. J. 63, 193–248 (1934)

    Article  MathSciNet  Google Scholar 

  31. J. Málek, J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids. J. Differ Equ. 127, 498–518 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. V.S. Melnik, J. Valero, On attractors of multivalued semiflows and differential inclusions. Set-Valued Anal. 6, 83–111 (1998)

    Article  MathSciNet  Google Scholar 

  33. V.S. Melnik, J. Valero, Addendum to “On Attractors of Multivalued Semiflows and Differential Inclusions” [Set-Valued Anal. 6, 83–111 (1998)]. Set-Valued Anal. 16, 507–509 (2008)

    Google Scholar 

  34. V. Pata, A. Miranville, On the regularity of solutions to the Navier–Stokes equations. Commun. Pure Appl. Anal. 11, 747–761 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.C. Robinson, J.L. Rodrigo, W. Sadowski, Classical theory of the three-dimensional Navier-Stokes equations (2016, to appear)

    Google Scholar 

  36. R. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier–Stokes equations. J. Differ. Equ. 229, 257–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. V. Scheffer, Turbulence and Hausdorff dimension, in Turbulence and the Navier–Stokes Equations, ed. by R. Temam. Lecture Notes in Mathematics, vol. 565 (1976), Springer, Berlin, New York pp. 94–112

    Google Scholar 

  38. G.R. Sell, Global attractors for the three dimensional Navier-Stokes equations. J. Dyn. Differ. Equ. 8, 1–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, 3rd revised edn. (North-Holland, Amsterdam, New York, Oxford, 1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Łukaszewicz, G., Kalita, P. (2016). Evolutionary Systems and the Navier–Stokes Equations. In: Navier–Stokes Equations. Advances in Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-27760-8_15

Download citation

Publish with us

Policies and ethics